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Optimization in High-Dimensional Space

Smooth and simple landscapes

Random landscapes

Rough but correlated landscapes

Relatively easy to find optimum.

Algorithms:  Newton’s method; gradient descent.

Difficult to find provably optimum solution.

Fairly effective heuristic methods available.

Algorithms:  Simulated annealing; Gibbs sampling.

Success depends on details of landscape.

Finding optimal solution intractable. 

Algorithms:  Brute force enumeration.

Difficulties:  Local optima.
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Local Multiple Alignment
Simple Version of Problem

Input:  � sequence; pattern width �.

Problem:  Find “highest-scoring”, ungapped local multiple alignment, 

involving one segment of length � from each sequence.

One may score the local alignment in various 

ways.  Here, we will use BILD scores.

Given an alignment, one may easily derive a profile or scoring matrix.

Given a profile, one may easily calculate its likelihoods, implied by various 

segments within a sequence.

Gibbs sampling alternates between generating profiles from given alignments, 

and sampling alignment positions based on given profile, until “convergence”.

Gibbs sampling:

Lawrence, C.E., et al. (1993) Science 262:208-214.

Search space:  ��



1.  Initialization

Choose random length-� segments from within the input sequences:

MTQPSKTTKLTKDEVDRLISDYQTKQDEQAQETLVRVYTNLVDMLAKKYSKGKSFHEDLRQVGMIGLLGAIKRYD

PVVGKSFEAFAIPTIIGEIKRFLRDKTWSVHVPRRIKELGPRIKMAVDQLTTETQRSPKVEEIAEFLDVSEEEVL

ETMEMGKSYQALSVDHSIEADSDGSTVTILDIVGSQEDGYERVNQQLMLQSVLHVLSDREKQIIDLTYIQNKSQK

ETGDILGISQMHVSRLQRKAVKKLREALIEDPSMELM

MPPLFVMNNEILMHLRALKKTKKDVSLHDPIGQDKEGNEISLIDVLKSENEDVIDTIQLNMELEKVKQYIDILDD

REKEVIVGRFGLDLKKEKTQREIAKELGISRSYVSRIEKRALMKMFHEFYRAEKEKRKKAKGK

MELRDLDLNLLVVFNQLLVDRRVSITAENLGLTQPAVSNALKRLRTSLQDPLFVRTHQGMEPTPYAAHLAEPVTS

AMHALRNALQHHESFDPLTSERTFTLAMTDIGEIYFMPRLMDVLAHQAPNCVISTVRDSSMSLMQALQNGTVDLA

VGLLPNLQTGFFQRRLLQNHYVCLCRKDHPVTREPLTLERFCSYGHVRVIAAGTGHGEVDTYMTRVGIRRDIRLE

VPHFAAVGHILQRTDLLATVPIRLADCCVEPFGLSALPHPVVLPEIAINMFWHAKYHKDLANIWLRQLMFDLFTD

MNAYTVSRLALDAGVSVHIVRDYLLRGLLRPVACTTGGYGLFDDAALQRLCFVRAAFEAGIGLGALARLCRALDA

ANCDETAAQLAVLRQFVERRREALANLEVQLAAMPTAPAQHAESLP



2.  Remove one segment from alignment

Select a sequence “�” at random from among the input sequences, and 

remove its segment from the multiple alignment:

VRVYTNLVDMLAKKY

ALMKMFHEFYRAEKE

TDIGEIYFMPRLMDV

LAVLRQFVERRREAL

PSPLYPWMRSQFGKC

DDTAIRTVLNQALSR

QWERGDSEPTGKNLF

YHHIKKEKSPKGKSS

RIESALLNKIAMLGT



3.  Construct a profile from the remaining alignment

VRVYTNLVDMLAKKY

ALMKMFHEFYRAEKE

TDIGEIYFMPRLMDV

LAVLRQFVERRREAL

Multiple alignment:

Log-odd scores:

A: 1  1  0 -1  0

C: -2  0 -2 -1 -1

D: 0  2 -3  0  1 

E: 1  1 -2  0  0



4.  Calculate relative likelihoods at all positions, and sample

Sequence �:

⋮

⇓

Sample a random position from sequence �, weighted by normalized likelihoods.

Add the segment at this position to the multiple local alignment.

If this new alignment is better than any so far seen, remember it.

If there has been no improvement in the last � iterations, stop.

Normalized likelihoods:

( 2
��	����� )

Otherwise, return to step 2, and remove a new segment.
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Why Does the Algorithm Work?

When no common pattern is represented in the multiple 

alignment, the positions in sequence �	to be sampled have 

roughly equal likelihoods, so the algorithm performs a random 

walk through the solution space.

Once a single segment is chosen that is similar to segments 

found in most or all sequences, these other segments are 

slightly favored, and a second related segment may well be 

sampled.

As more related segments are found, the process accelerates, 

converging on a locally optimal solution.  If there are no other 

good local optima, this solution has a good chance or being the 

global optimum.



Behavior of the Objective Function
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The Evolving Multiple Alignment

10 iterations 480 iterations 1680 iterations1 iteration



Phase Shifts

The Gibbs sampling algorithm may easily converge on a local optimum 

that is a “phase-shifted” version of the global optimum.  Why?

Optimal solution:
Solution found:

SQKETGDILGISQMHVSRLQRKAVKKL

TQREIAKELGISRSYVSRIEKRALMKM

RVSITAENLGLTQPAVSNALKRLRTSL

CFVRAAFEAGIGLGALARLCRALDAAN

RRIEIAHALCLTERQIKIWFQNRRMKW

NQIRAADLLGLNRNTLRKKIRDLDIQV

TQRSLAKALKISHVSVSQWERGDSEPT

EKEEVAKKCGITPLQVRVWFINKRMRS

GTEKTAEAVGVDKSQISRWKRDWIPKF

⋯⋯
One remedy is to add a separate 

“phase-shift sampling step”.

No segments are removed, but 

likelihoods are calculated for the 

current alignment and several

phase-shifted alternatives.  These 

alignments are then sampled among.

This can be understood as changing 

the topology, of definition of distance,

on the underlying “alignment space.”



Pattern Width

How does one choose pattern width?

Choosing � too small discards available information for locating a pattern, 

while choosing � too large adds unnecessary noise.   The Gibbs sampling 

algorithm, however, should be fairly robust to deviations that are not too far 

from the optimal �.

What is a reasonable criterion for optimal pattern width?

It can be difficult to compare multiple alignment scores directly for different 

choices of �, especially when all column scores are positive.  One criterion 

for selecting � is the Minimum Description Length Principle.

For ungapped local multiple alignments, this is equivalent to optimizing the 

BILD score along a single high-dimensional diagonal, which can be achieved 

using a variation of the Smith-Waterman algorithm.

Employing the criterion of optimal BILD score, � may be modified 

dynamically, within a Gibbs sampling program. 

Grunwald, P.D. (2007) The Minimum Description Length Principle. MIT Press, Cambridge, MA.

Altschul, S.F., et al. (2010) "The construction and use of log-odds substitution scores for multiple sequence 

alignment." PLoS Comput. Biol. 6:e1000852.



Close Sequences

If two input sequences are too similar to one another, they can cause each 

other to “stick” during the sampling stage.  In other words, even when 

they are misaligned, the current position in one sequence will cause the 

equivalent position in the other sequence to be selected, and vice versa.

Possible remedies

One may remove extra copies of sequences that are too similar to one another 

from the input set, and add them back in at a later stage.  Paradoxically, this 

suggests that the most distantly related sequences should be aligned first.

Alternatively, one may employ a strategy analogous to the “realignment stage” 

in MUSCLE.  The relative alignment of a set of closely related sequences can 

be fixed.  Then segments from these sequences can be removed in tandem from

the multiple alignment, and new segments (in their previously-fixed relative 

alignment) sampled in one pass.  



Several Generalizations of the Problem

Some sequences may be missing the pattern.

Some sequences may have multiple copies of the pattern.

The sequences may contain multiple distinct patterns, 

either consistently ordered or in arbitrary order.

The best alignment between the consensus pattern and its 

occurrences within the sequences may contain gaps.


