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Multiple Alignment Substitution Scores

4 matches; 6 mismatches

a)  Sum-of-the-pairs or SP-scores

Murata, M., et al. (1985) “Simultaneous comparison of three 

protein sequences.” Proc. Natl. Acad. Sci. USA 82:3073-3077.

Bacon, D.J. & Anderson, W.F. (1986) “Multiple 

sequence alignment.” J. Mol. Biol. 191:153-161.



Multiple Alignment Substitution Scores

6 matches; 1 mismatch

b)  Tree scores

Sankoff, D. (1975) “Minimal mutation trees

of sequences.” SIAM J. Appl. Math. 28:35-42.



Multiple Alignment Substitution Scores

3 matches; 2 mismatches

c)  Star or consensus scores



Multiple Alignment Substitution Scores
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d)  Entropy-based scores

Schneider, T.S., et al. (1986) “Information content of binding 

sites on nucleotide sequences.” J. Mol. Biol. 188:415-431.

= 1.03 bits

log 4 − 0.6 log 0.6 − 0.4	log	(0.4)



Multiple Alignment Substitution Scores

e)  Log-odds scores

“Bayesian Integral Log-odds” or “BILD” scores
The construction of column scores from Dirichlet mixture priors
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where �� is the amino acid count vector implied by ��

Altschul, S.F., et al. (2010) "The construction and use of log-odds substitution 

scores for multiple sequence alignment." PLoS Comput. Biol. 6:e1000852.

Assuming uniform Dirichlet priors,  $ "AAACC" = log 1.83 = 			0.87 bits

$ "AAACT" = log 0.91 = −0.13 bits



Multiple Alignment Gap Scores

Gap scores should, in general, be defined consistently 

with substitution scores.

For example, if “SP” substitution scores are used, gap 

scores should also be defined as the sum of gap scores 

for the implied pairwise alignments.

Following this prescription completely rigorously for 

affine gap scores entails unacceptable algorithmic 

complications, which can be avoided by a slight 

modification of one’s definition of gap score.  

Altschul, S.F. (1989) “Gap costs for multiple 

sequence alignment.” J. Theor. Biol. 138:297-309.



Local Multiple Alignment:  The Problem

Neither pattern nor locations known



Local Multiple Alignment

Desiderata for an ideal local multiple alignment algorithm:

Time complexity is linear in number of sequences

Employs an appropriate measure of alignment quality

Measure can reflect known amino acid relationships  (proteins)

Pattern may be missing or present in multiple copies

Width of pattern not unduly constrained

Width need not be specified a priori

Algorithm can find multiple distinct patterns

Alignment of segments may contain gaps

Algorithm is rigorous optimization procedure

Output is independent of order of input sequences

Algorithm is deterministic



Approaches to Local Multiple Alignment

Consensus Word Methods

Template Methods

Progressive Alignment Methods

Pairwise Consistency Methods

Statistical Methods

Number of sequences:

Average length of sequences:

Specified width of pattern:

Size of alphabet:

We will consider only 

approaches that do 

not allow gaps

Notation

(
)
*
+



Consensus Word Methods

Queen, C.M. et al. (1982) Nucl. Acids Res. 10:449-456. Waterman, M.S., et al. (1984) Bull. Math. Biol. 46:515-527.

Galas, D.J., et al. (1985)  J. Mol. Biol. 186:117-128. Staden, R. (1989) Comput. Appl. Molec. Biol. 5:293-298.

Find a consensus word that is “close” to a word in each, or a large number of the 

input sequences.  This may be thought of as finding an optimal star alignment.

Algorithmic outline

For each word of fixed width +, define a neighborhood of ,	adjacent words, each 

with an associated score. Example:  For DNA, words could be 8-tuples, and the neighborhood 

of - all those words with no more than 2 mismatches with -. 

Given each sequence $, for each word - in $, update the “best match to $” for all 

neighbors of -.   
Time complexity:  	(), + *.. Space complexity: *..

Advantages

For fixed word and neighborhood size, time complexity is linear in input data.

Given definition of problem, algorithm is rigorous.

Disadvantages

Pattern length predefined.  Fairly severe restrictions on pattern length and 

neighborhood size.  No scores for words outside neighborhood.

Verdict:  May be OK for some DNA applications; of very little use for proteins.



Template Methods

Posfai, J., et al. (1989) Nucl. Acids Res. 17:2421-2435.

Smith, H.O., et al. (1990) Proc. Natl. Acad. Sci. USA 87:826-830. Leung, M.Y., et al. (1991) J. Mol. Biol. 221:1367-1378.

Sobel, E. & Martinez, H. (1986) Nucl. Acids Res. 14:363-374.

Search for a set of templates within each input sequence.

Algorithmic outline

Define a set of templates of total size ,.

Example:  For protein sequence comparison, a template could be “V*C**D”, where ‘*’ is a wild card.

Compare each template to all input sequences, updating a score for the template 

whenever a match is found. Time complexity:  (),. Space complexity:  ,.
Comment

This is basically an inversion of the consensus word methods, but with processing 

done one template at a time, rather than one sequence at a time.

Advantages and Disadvantages

Essentially the same as those for the consensus word methods.

Verdict:  More flexible than consensus word methods, but with similar 

major limitations for protein comparison.



Progressive Alignment Methods

Bacon, D.J. & Anderson, W.F. (1986) J. Mol. Biol. 191:153-161.

Stormo, G.D. & Hartzell, G.W. III (1989) Proc. Natl. Acad. Sci. USA 86:1183-1187.

Hertz, G.Z., et al. (1990) Comput. Appl. Molec. Biol. 6:81-92.

Build up local multiple alignments of fixed width in a progressive manner.

Algorithmic outline

Select a fixed pattern width +.  Compare all segments of this width in the first 

sequence to all such segments in the second, using an arbitrary scoring system.  

Retain the , best pairs.  Compare these to all segments in the third sequence, etc. 

Variations

Retain the best multiple alignment for each segment from the first sequence.

Time complexity:   (),+

Advantages

No significant restriction on pattern width.  For fixed , and +, linear time in 

length of input data.  Can use arbitrary score function.

Disadvantages

Heuristic: optimal solution not guaranteed.  Dependent on sequence order.  

Parameter , may need to be very large to yield good results.



Pairwise Consistency Methods

Schuler, G.D., et al. (1991) Proteins 9:180-190. Vingron, M. & Argos, P. (1991) J. Mol. Biol. 218:33-43.

Compare all pairs of sequences.  Seek consistency among aligned letters, or diagonals.

Algorithmic outline (Schuler et al.)

Execute ungapped Smith-Waterman algorithm on all pairs of 

sequences.  Mark all diagonals containing segment pairs that 

exceed a threshold score /.  Build up “high-dimensional” 

diagonals, all (or almost) all of whose pairwise projections 

have been marked.  Search any such high-dimensional 

diagonals for high-scoring ungapped local multiple alignments.

Time complexity:     (0)0 + 1(/)
Advantages

No predefined pattern width required.  Can find multiple distinct patterns.  

Can use arbitrary scoring system.  Need not include all sequences.  Rigorous 

optimization procedure, given constraint on pairwise projection scores.

Disadvantages

Quadratic time in input length.  Space and time complexity balloon for small /.

Comment

Good for a moderate number of sequences.  Implemented in interactive “MACAW” program.



The Number of Consistent Diagonals

Once one has added ( sequences, the number of (-

diagonals is approximately ()23�.  

Consider adding one sequence of length ) at a time.

Assume the probability of a 2-diagonal being marked is  , 

and that all 2-diagonals are independent.

The number of 2-diagonals implied by an (-diagonal is 
(
2 .

3-diagonal Implied 2-diagonal

( (-diagonals

Approximate no. of “random” consistent (-diagonals, assuming ) = 1000, and  = 0.1. 

2 × 106			
3 × 107			
4 × 108			
5 × 10�0
6 × 10�:
7 × 10�;

2 × 106			
3 × 107			
4 × 108			
5 × 10�0
6 × 10�:
7 × 10�;

1 × 106			
3 × 107			
6 × 108			
10 × 10�0
15 × 10�:
21 × 10�;

Implied 2-diagonals

200 × 106			
3,000 × 107			
4,000 × 108			
500 × 10�0
6 × 10�:

0.007 × 10�;

Consistent (-diagonals



Statistical Methods

Lawrence, C.E. & Reilly, A.A. (1990) Proteins 7:41-51.

Lawrence, C.E., et al. (1993) Science 262:208-214.

Cardon, L.R. & Stormo, G.D. (1992) J. Mol. Biol. 223:159-170.

Local multiple sequence alignment can be view as an optimization problem 

in a rough, high-dimensional space.

Dempster, A.P., et al. (1977) J. Roy. Stat. Soc. B 39:1-38.

Geman, S. & Geman, D. (1984) IEEE Trans. Pattern Analysis and Machine Intelligence 6:721-741.

Metropolis, N., et al. (1953) J. Chem. Phys. 21:1087-1092.

Applied to local multiple sequence alignment, these approaches alternate 

between refining a provisional pattern, based upon its assumed locations 

within the sequences, and updating these locations, given the pattern.

One may approach this classic problem with the deterministic expectation-

maximization (EM) method (Dempster, et al., 1977). 

Alternatively, one may apply one of the related stochastic methods of 

simulated annealing (Metropolis, et al., 1953) or Gibbs sampling (Geman & 

Geman, 1984).   


