CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 20

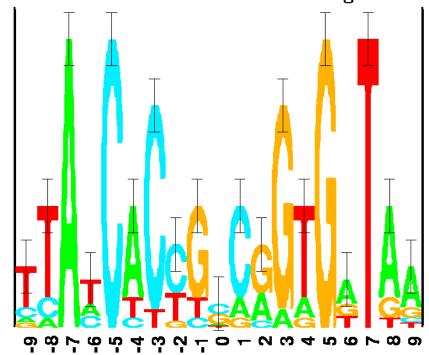
Motif finding
Microarray data analysis

forward-backward why backward

Motif finding

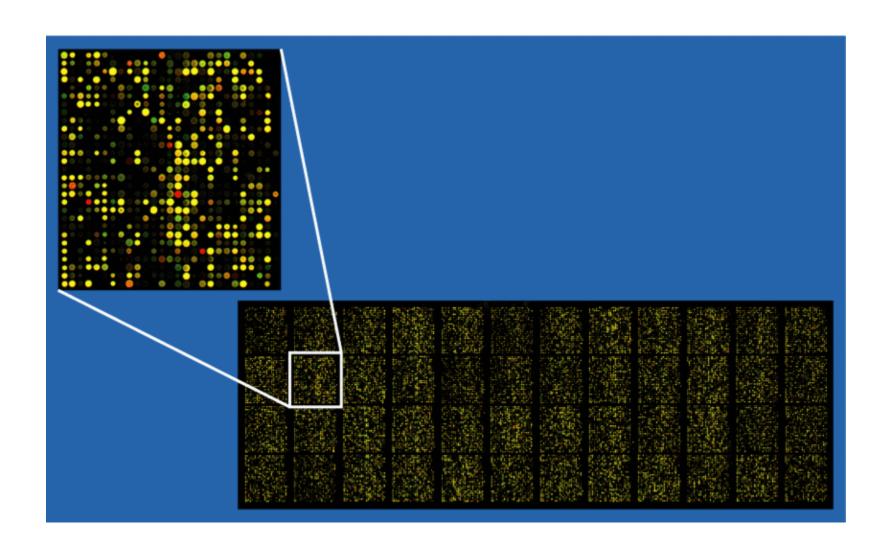
- Problem: given a set of genes, are there any "motifs" common in the upstream region?
- Motifs could be transcription factor binding sites or other regulatory elements
- Parameters:
 - length of upstream region (e.g. 5kbp)
 - length of motif (10 bp)
- Complexity: HIGH
 - look through all possible combinations of k-mers for N genes
- Solution: probabilistic local search (Gibbs sampling, expectation-maximization, etc.)

atgaccgggatactgatagAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg acccctattttttgagcagatttagtgacctggaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAAAGGaaGGCttatag cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGCcaattatgagagagctaatctatcgcgtgcgtgttcat aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagctt<mark>ActAAAAAGGaGcGG</mark>a


N - # of genes, L - # length of upstream region, K-motif length $(L-K+1)^N$ possible choices

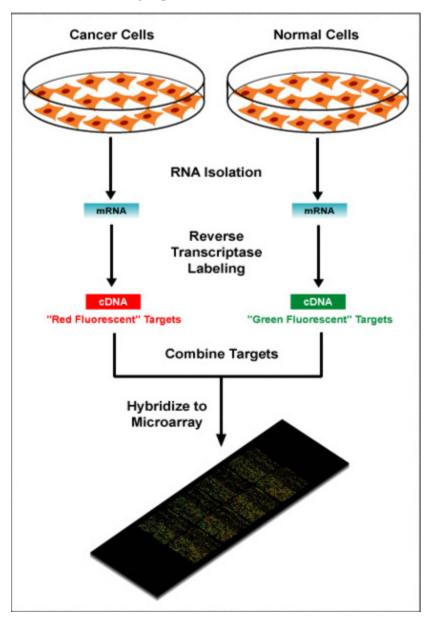
Probabilistic search

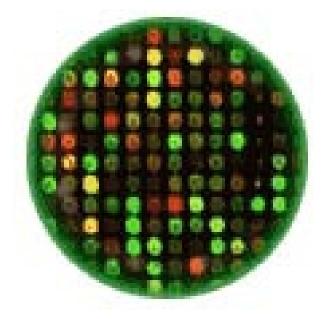
Outline:


- Pick a set of random k-mers (one from each sequence)
- Build a multiple-alignment profile – frequency of each nucleotide at each of the k positions
- Remove one sequence at random and find the k-mer within it that best matches the profile (p(k-mer|profile)= product of frequencies for kmer nucleotides in profile table)
- Recompute profile and repeat

12 Lambda cI and cro binding sites

	0	1	2	3
A	0.2	0.05	0.3	0.0
С	0.7	0.1	0.0	0.3
G	0.03	0.5	0.7	0.3
Т	0.07	0.35	0.0	0.4


Microarray data analysis


Types of microarrays

- By technology
 - Spotted
 - Affymetrix
 - Nimblegen
 - Illumina
- By information
 - cDNA (genes or parts of genes)
 - DNA (e.g. sequencing by hybridization)
 - Tiling arrays (whole genome)
 - Protein

Typical microarray experiment

- Difference in color intensity indicate differences in gene expression levels
- Red expressed in sample
- Green expressed in control
- Yellow expressed in both
- Black expressed in neither

Typical data analysis process

Image analysis

- find spots
- find errors (air bubbles, fingerprints, smears, etc.)

Normalization

 make sure total intensity for green and red is the same (otherwise cannot compare intensities)

Clustering

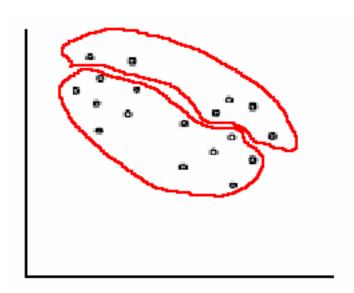
- which genes have similar expression?
- which genes are expressed similarly during a disease?
- which genes have similar expression patterns over time (time-course experiments)?

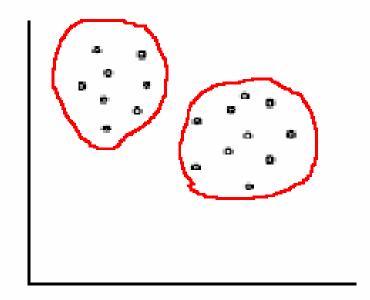
Data clustering

Agglomerative

- Start with single observations
- Group similar observations into the same cluster

Divisive

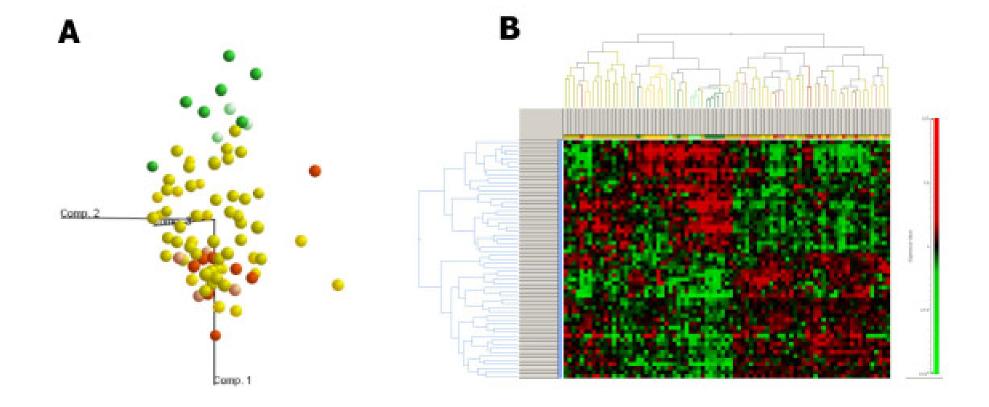

- All datapoints start in the same cluster
- Iteratively divide cluster until you find good clustering

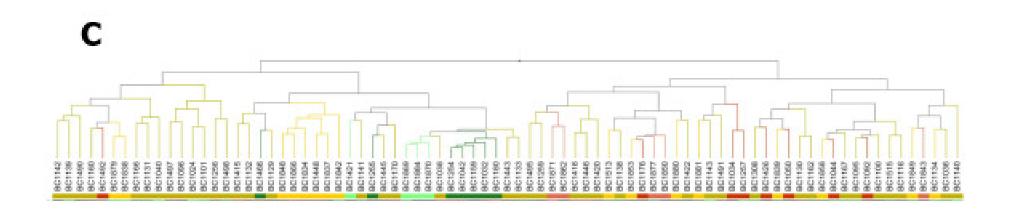

Hierarchical

 Build a tree – leaves are datapoints, internal nodes represent clusters

Measures of goodness of clustering

- Homogeneity
 - All points in a cluster must be similar
- Separation
 - Points in different clusters are disimilar




Microarray clustering

- For each gene can be viewed as an array of numbers
 - expression of gene at different time-points
 - expression of gene in different conditions (normal, variants of a disease, etc.)
- Each time-point or tissue sample can also be viewed as an array of numbers
 - expression levels for all genes
- Basic idea: cluster genes and/or samples to highlight genes involved in disease

Hierarchical clustering

- UPGMA (remember from phylogenetic trees?)
 - compute distance between genes (e.g. euclidean distance of expression vectors)
 - join most similar genes
 - repeat
 - Key element compute distance between a gene and a cluster, or between two clusters – average distance between all genes in the two clusters

k-means clustering

- Split data into exactly k clusters
- Basic algorithm:
 - Create k arbitrary clusters pick k points as cluster centers and assign each other point to the closest center
 - Re-compute the center of each cluster
 - Re-assign points to clusters
 - Repeat
- Another approach: pick a point at and see if moving it to a different cluster will improve the quality of the overall solution. Repeat!