CMSC423: Bioinformatic Algorithms,
Databases and Tools
Lecture 21

Microarray data analysis
RNA folding

Hierarchical clustering

« UPGMA (remember from phylogenetic trees?)

— compute distance between genes (e.g. euclidean distance of
expression vectors)

— join most similar genes
— repeat

— Key element — compute distance between a gene and a
cluster, or between two clusters — average distance between
all genes in the two clusters
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k-means clustering

» Split data into exactly k clusters

 Basic algorithm:

— Create k arbitrary clusters - pick k points as cluster centers
and assign each other point to the closest center

— Re-compute the center of each cluster
— Re-assign points to clusters
— Repeat

« Another approach: pick a point at and see if moving it
to a different cluster will improve the quality of the
overall solution. Repeat!




k-means clustering

» Measure of cluster goodness: mean square distance
of each point to its nearest cluster center.

» d(Points, Centers) = sum(d(point i, center)"2) / n

k-means clustering demo




Other clustering methods

 Principal component analysis
— "rotate" cloud of points until clusters become obvious
— essentially projection onto the appropriate plane or line

 Self Organizing Maps

— based on neural networks

 Clustering of time-series data

Clustering of time-series data
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Assessing significance

« All clustering methods produce clusters EVEN IF NO
CLUSTERS EXIST!!!

* Need to associate a confidence that the clusters are
real
 Basic approach — bootstrapping

— randomly shuffle data labels (e.g. disease/no disease, or
time-point)

— recompute clustering
— count how often the initial clusters appear in random data

RNA folding

» Function of RNA molecules depends on how they fold,
based on nucleotide base-pairing
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9 Thermus thermophilus

small subunit ribosomal RNA

Types of structures
* Nested (hairpin)
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Nussinov's algorithm

Assumes no pseudo-knots

Dynamic programming approach — maximize # of
pairings

S — string of nucleotides representing the RNA
molecule

Sub-problem — F[i,j] — score of folding just SJi..j]
Initial values: F[i-1,i] = FJi,i] = F[i, i+1] =0

Nussinov's algorithm

F[i,j] is the maximum of:

i+1/7j_1 . Fli+1,j-1] + 1
Hk j I F[i+1,]] i *‘\1 if S[i+1] complementary

i to S[j-1]
Sl[i] unpaired S[i] paired with S[j]

V. max,

Q . Fi,j-1]
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S[j] unpaired Branch




Questions
* In what order do we fill the dynamic programming
table?

» How can we ensure that "loops" consist of at least k
nucleotides?




