
1

CMSC423: Bioinformatic Algorithms,

Databases and Tools

Lecture 8

Sequence alignment: inexact
alignment

dynamic programming, gapped
alignment

Note

• Lecture 7 – suffix trees and suffix arrays will be
rescheduled

2

Exact alignment recap

• Exact matching can be done efficiently:

O(|Text| + |Pattern|)

• Key idea: preprocess data to keep track of similar
regions, then use information to "jump" over places
where no match can occur

Z

KMP

B-M

Inexact matching: why?

• Redundancy in genetic code: nucleotide sequence
may differ, but proteins the same

• Different amino-acid sequences still fold the same
way: function unchanged (generally changing an
amino-acid with a similar one doesn't affect protein
function)

• Aligning ESTs (RNA sequences) to DNA need to
account for gaps corresponding to exons

• Need to account for sequencing errors

S Y P T D

TCTTATCCTACTGAT

TCATACCCCACAGAC

3

HBB_HUMAN FFESFGDLSTPDAVMGNPKVKAHGKKVL-----GAFSDGLAHLDNLKGTF

HBB_HORSE FFDSFGDLSNPGAVMGNPKVKAHGKKVL-----HSFGEGVHHLDNLKGTF

HBA_HUMAN YFPHF-DLS-----HGSAQVKGHGKKVA-----DALTNAVAHVDDMPNAL

HBA_HORSE YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVGHLDDLPGAL

MYG_PHYCA KFDRFKHLKTEAEMKASEDLKKHGVTVL-----TALGAILKKKGHHEAEL

GLB5_PETMA FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS

LGB2_LUPLU LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

* : . . .:: *. : :. :

Several hemoglobins

From http://bioinfo.cnio.es/docus/courses/SEK2003Filogenias/seq_analysis/multiple.html

4

Warm-up – Longest Common Subsequence

• Given two strings of letters, identify longest string of
letters that occurs, in the same order, in both strings

AG C GTAG

G C G A

GTCAG A

• Find the longest chain of 1s, moving to the right and
down

11A

G

A

C

T

G

111

11

A

1

G

1

1

11

GATGC

Dynamic programming

• Idea: re-use previously computed information

• LCS[i,j] – longest common subsequence of strings

S1[1..i], S2[1..j]

11A

G

A

C

T

G

111

11

A

1

G

1

1

11

GATGC

i

j

LCS[i,j] is the maximum of:

1.if S1[i] = S2[j]
LCS[i-1, j-1] + 1

else

LCS[i -1, j-1]

2. LCS[i – 1, j]
3. LCS[i, j – 1]

Goal: find LCS[m,n]

5

Computing the LCS table

1A

G

A

C

T

G

0

1

0

0

0

A

1

G

00010

GATGC

4433221A

G

A

C

T

G

4333220

3322211

0

0

0

A

1

1

1

G

22222

22211

00010

GATGC

21A

G

A

C

T

G

20

11

0

0

0

A

1

1

1

G

00010

GATGC

Row 0 and column 0 easy to fill

Fill the rest column by column

Find the actual sequence:

trace-back pointers

Extending to sequence alignment

AG-C-GTAG

-GTCAG-A-

• In LCS, mis-alignments were free

• What happens if we pay for our "mistakes"? (this
also allows us to account for "similar" amino-
acids)

– Value[A, A] = 10

– Value[A,G] = -5

– Value[A,-] = -2

– etc.

• The same dynamic programming algorithm works!

6

The recurrences

AG-C-GTAG

-GTCAG-A-

Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i],S2[j]]
AG-C-G AG-C-G

-GTCAG -GTCAT

2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)
AG-C-GT

-GTCAG-

3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)
AG-C-

-GTCA

The dynamic programming table
Score[i,j] is the maximum of:

1. Score[i-1, j-1] + Value[S1[i-1],S2[j-1]] (S1[i-1], S2[j-1] aligned)

2. Score[i – 1, j] + Value[S1[i], -] (S1[i] aligned to gap)

3. Score[i, j – 1] + Value[-, S2[j]] (S2[j] aligned to gap)

-14-12-10-8-6-4-20-

-14

-10

-8

-6

-4

-2

-

A

G

A

C

T

G

-8

-6

-4

A

4

6

8

G

16

4

6

GATGC
Value (A, A) = 10

Value (A, G) = -5

Value (A, -) = -2

Note: we only look

at 3 adjacent boxes

7

Local vs. global alignment

• Can we change the algorithm to allow S1 to be a
substring of S2?

ACAGTTGACCCGTGCAT

----TG-CC-G------

• Key idea: gaps at the end of S2 are free

• Simply change the first row in the DP table to 0s

• Answer is no longer Score[n, m], rather the largest

value in the last row

Sub-string alignment

00000000-

-6

-4

-2

-

T

G

C

A G

262830186

18208

810

GATGC

AGCGTAG

CGT

8

Local alignment

• What if we just want a region of similarity?

ACAGTTGACCCGTGCAT

|| || |

GTCATG-CC-GAGATCG

• First row and column set to 0s

• Allow alignment to start anywhere:

Score[i,j] = max{0, case 1, case 2, case 3}

• Answer is location in matrix with highest score

Local alignment

00000000

0

0

0

0

0

0

C

T

G

C

T

C

30

20

A

0

G

10

GATGC

AGCGTAG

|||

CTCGTC

9

Various flavors of alignment

• Alignment problem also called "edit distance" – how
many changes do you have to make to a string to
convert it into another one.

• Edit distance also called Levenshtein distance

• Local alignment – Smith-Waterman

• Global alignment – Needleman-Wunsch

