CMSC 424 — Database design
Lecture 10
Normalization

Mihai Pop

Midterm...

* Graded A & B — disappointing
* Outline of what I expected for A & B

Normalization, functional dependencies....

* Large schemas: redundant information
* Small schemas: inefficient

* Normalization — a way to pick a “reasonable” compromise

Combine Schemas?

* Suppose we combine borrower and loan to get
bor_loan = (customer_id, loan_number, amount)

* Result is possible repetition of information (L-100 in
example below)

foas_number

BT

L-10H

cristomer_id

dori_ sl

13657
15-2002

23-52]

=

rusloner_id

dovars_ i il

§ el e E

- -
L ARRD
15-202

- Py
= _1

L-10H
L-10)
L-10H

L0000
L0000
| (D

forroiner

A Lossy Decomposition

SRERD

123-45-0789
987-65-4321

' id | empd

Kim
Kim

HE2-(000
AE9-94999

e | Felephone__memiher| starf_dale

159H:4-{13-25
1981-41-16

| emplovee_id | emeploves_name |

employee

errplowes_ nane

telepiione _numiber

start_dale |

1 23-45-p7R9
SRT-65-4321

Kimy
Kimy

123-45-6789
123-45-6789
Ha7-65-4321
Ha7-65-4321

Kim
Kim
Kimn
Kimn

Kim REZ-0000 L 584-03-249
Kim REN-G99Y 15%81-01-16
[=d
L
HE 2000 1984-03-2%
HEY - 1981-011-16
H82-(xX) 1984-013-2%
HEG-S 1981-011-1&

| emprdovee_id | emplovee_name | telephone_number] start_date |

Functional dependencies

* How can we formally reason about when a decomposition is
correct?

* Functional dependencies — how the attributes relate to each
other:

— basic idea: super-key —if I know the values of the
attributes in a super-key I know the entire tuple

super-key > all attributes (functional dependency)
super-key implies all attributes (note: “implies” is my
term)

— more generally — any set of attributes can “imply” any

other set of attributes
o«— B iff ¥V tuples ¢, t,

t|a]=t,|o|=1[B]=t,[B] or
t1BlE | Bl=t o] %1,]

FDs continued

trivial dependencies: x—«
x— Bif S

closure

— need all FDs

— some logically implied by otherse.g. ifA - B & B -~ C then A - C is
implied

given F = set of FDs, find F+ (the closure) of all logically implied by F

Why??
See:
http://www.schneier.com/blog/archives/2007/12/anonymity _and t 2.html

Given a user’s public IMDb ratings, which the user posted voluntarily to selectively
reveal some of his (or her; but we’ll use the male pronoun without loss of generality)
movie likes and dislikes, we discover all the ratings that he entered privately into the
Netflix system, presumably expecting that they will remain private.

http://www.schneier.com/blog/archives/2007/12/anonymity_and_t_2.html

FD formalism

Amstrong’s axioms

* reflexivity: if BS axthen x — B (trivial FD)
* augmentation: ifx—fBthenyox—yp
* transitivity: ifx—>BAB—-ythenx—y

More rules (can be inferred from Amstrong's axioms)

* union rule: if x >BAx—ythenx— By
* decomposition rule: if x—Bythenx— fandx—y
* pseudotransitivity rule: if x - Ay B— Sthenaxy— 6§

Computing the closure of a set of FDs

Example: R(A,B,C,G,H,I)
F={A - B
A - C
CG - H
CG -1
B-H]}
F+={A - H A -B - H transitivity
CG - HI /¥ CG - H, CG - I union rule
AG - 1 /* A - C augmentation AG - CG - 1
AG - H /* CG-H

* there is a non-trivial (exponential) algorithm for computing F+

Closure of Attribute Sets

* useful to find if a set of attributes is a superkey

* the closure a+ of a set of attributes a under F is the set of all attributes that are
functionally determined by a

* there is an algorithm that computes the closure

Example:

Algorithm to Compute (AG)+
start with result=(AG)
A - B expands result=(AGB)
A - C expands result=(AGBC)
CG_-H “”» result=(AGBCH)
CG - | “. result=(AGBCHI)
B_-H nomore expansion

Note that since G is not on any right hand side, no subset of the attributes can be a
superkey unless it contains G for there is no FD to generate it.

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

* Testing for superkey:

— To test if a is a superkey, we compute o+ and check if o+ contains all
attributes of R.

* Testing functional dependencies

— To check if a functional dependency a — 3 holds (or, in other words, is in
F+), just check if 3 U a+.

— That is, we compute 0+ by using attribute closure, and then check if it
contains [3.

— Is a simple and cheap test, and very usetul

Lossless Decompositions

* All attributes of an original schema (R) must appear in the decomposition
(Ry, Ry):

R=R,OR,

* Lossless-join decomposition.
For all possible relations » on schema R

7= [Tra () IXT [ga (7)

* A decomposition of R into R, and K, is lossless join if and only if at least one
of the following dependencies is in F*:
— R, nR, - R,
— R, nR, - R,
— anyone of these two FDs guarantees uniqueness in the mapping

Dependency Preservation

In a decomposition

* dependencies are preserved if
— we do not need to join in order to enforce FDs

— all FDs remain intra-relational and do not become inter-relational
constraints

* to check if a decomposition is dependency preserving
— we need to examine all FDs in F+

* there is an algorithm for testing dependency preservation
— requires the computation of F+

The Normal Forms

1NF: every attribute has an atomic value (not a set value)

2NF: we will not be concerned in this course

3NF: if foreach FD X-Y either

— it is trivial or

— X is a superkey

— Y-Xis a proper subset of a candidate key

INF/ 2NF 3NF

ANF,...: we are not concerned In this course.

BCNF: if for each FD XY either
— it is trivial or
— X Is a superkey

