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Midterm...
• Graded A & B – disappointing
• Outline of what I expected for A & B



Normalization, functional dependencies....
• Large schemas: redundant information
• Small schemas: inefficient

• Normalization – a way to pick a “reasonable” compromise



Combine Schemas?
● Suppose we combine borrower and loan to get 

bor_loan = (customer_id, loan_number, amount )
• Result is possible repetition of information (L-100 in 

example below)



A Lossy Decomposition



Functional dependencies
• How can we formally reason about when a decomposition is 

correct?
• Functional dependencies – how the attributes relate to each 

other:
– basic idea: super-key – if I know the values of the 

attributes in a super-key I know the entire tuple

super-key               all attributes    (functional dependency)
super-key implies all attributes (note: “implies” is my 
term)

– more generally – any set of attributes can “imply” any 
other set of attributes

 iff ∀ tuples t1, t 2
t1 []=t 2[]⇒ t1[]=t 2[] or
t1[]≠t 2[]⇒ t1[]≠t 2[]



FDs continued

• trivial dependencies: 
 

                                    
• closure

– need all FDs
– some logically implied by others e.g.  if A → B  &  B → C  then  A → C  is 

implied  
• given F = set of FDs, find F+ (the closure) of all logically implied by F

• Why?
• See: 

http://www.schneier.com/blog/archives/2007/12/anonymity_and_t_2.html
• Given a user’s public IMDb ratings, which the user posted voluntarily to selectively 

reveal some of his (or her; but we’ll use the male pronoun without loss of generality) 
movie likes and dislikes, we discover all the ratings that he entered privately into the 
Netflix system, presumably expecting that they will remain private.


 if ⊆

http://www.schneier.com/blog/archives/2007/12/anonymity_and_t_2.html


FD formalism
Amstrong’s axioms 
• reflexivity:           
• augmentation:   
• transitivity:        

More rules (can be inferred from Amstrong's axioms)
• union rule:                      
• decomposition rule:        
• pseudotransitivity rule:     

if ⊆ then (trivial FD)
if  then
if ∧ then

if ∧ then
if  thenand
if ∧ then



Computing the closure of a set of FDs

Example:    R(A,B,C,G,H,I)
 F = { A → B
         A → C
         CG → H
         CG → I
         B → H  }
F+ = { A → H                           /* A → B → H        transitivity
          CG → HI                       /* CG → H, CG → I  union rule
           AG → I                         /*  A → C  augmentation AG → CG → I
           AG → H                      /*                                                       CG → H
...

• there is a non-trivial (exponential) algorithm for computing F+



Closure of Attribute Sets
• useful to find if a set of attributes is a  superkey
• the closure  α+ of a set of attributes α under F is the set of all attributes that are 

functionally determined by α
• there is an algorithm that computes the closure

Example:

Note that since G is not on any right hand side, no subset of the attributes can be a 
superkey unless it contains G for there is no FD to generate it.  

 R(A,B,C,G,H,I)    F={ A → B, A → C, CG → H, CG → I, B → H  }
      Algorithm to Compute  (AG)+
start with                 result=(AG)
A → B    expands     result=(AGB)
A → C    expands     result=(AGBC)
CG → H      “-”          result=(AGBCH) 
CG → I        “-”          result=(AGBCHI)
B → H      no more expansion



Uses of Attribute Closure
There are several uses of the attribute closure algorithm:

• Testing for superkey:
– To test if α is a superkey, we compute α+, and check if α+ contains all 

attributes of R.

• Testing functional dependencies
– To check if a functional dependency α → β holds (or, in other words, is in 

F+), just check if β ⊆ α+. 
– That is, we compute α+ by using attribute closure, and then check if it 

contains β. 
– Is a simple and cheap test, and very useful



Lossless Decompositions

• All attributes of an original schema (R) must appear in the decomposition 
(R1, R2):

R = R1 ∪ R2

• Lossless-join decomposition.
For all possible relations r on schema R

r = ∏R1 (r) |X| ∏R2 (r) 

• A decomposition of R into R1 and R2 is lossless join if and only if at least one 
of the following dependencies is in F+:
– R1 ∩ R2 → R1

– R1 ∩ R2 → R2

– anyone of these two FDs guarantees uniqueness in the mapping



Dependency Preservation
In a decomposition
• dependencies are preserved if 

– we do not need to join in order to enforce FDs
– all FDs remain intra-relational and do not become inter-relational 

constraints
• to check if a decomposition is dependency preserving

– we need to examine all FDs in F+
• there is an algorithm for testing dependency preservation 

– requires the computation of F+



The Normal Forms
• 1NF:  every attribute has an atomic value (not a set value)

• 2NF:  we will not be concerned in this course

• 3NF:   if for each FD X→Y  either
– it is trivial or
– X is a superkey
– Y-X is a proper subset of a candidate key

• BCNF: if for each FD X→Y  either
– it is trivial or
– X is a superkey

• 4NF,…: we are not concerned in this course.

BCNF3NF2NF1NF 4NF,..


