
CMSC 424 – Database design
Lecture 23
Recovery

Mihai Pop

Admin
• Signup sheet for project presentations: contact Sharath ASAP

– also check forum
• Course evaluation:

http://www.CourseEvalUM.umd.edu

• Additional queries (deadline – your demo day)
• Find the authors, their skills and education, of the top 5

highest cited publications.

• Find the most accomplished author in your database. (Use
any ranking function for "accomplishment" : e.g # of Papers +
of awards)

Recovery

Context
• ACID properties:

– We have talked about Isolation and Consistency
– How do we guarantee Atomicity and Durability ?

• Atomicity: Two problems
–Part of the transaction is done, but we want to

cancel it
»ABORT/ROLLBACK

–System crashes during the transaction. Some
changes made it to the disk, some didn’t.

• Durability:
–Transaction finished. User notified. But changes not

sent to disk yet (for performance reasons). System
crashed.

• Essentially similar solutions

Reasons for crashes
• Transaction failures

– Logical errors, deadlocks
• System crash

– Power failures, operating system bugs etc
• Disk failure

– Head crashes; for now we will assume that either this
does not happen or that RAID is used to handle this

– STABLE STORAGE: Data never lost. Can approximate
by using RAID and maintaining geographically distant
copies of the data

Approach, Assumptions etc..
• Approach:

– Guarantee A and D:
• by controlling how the disk and memory interact,
• by storing enough information during normal processing to

recover from failures
• by developing algorithms to recover the database state

• Assumptions:
– System may crash, but the disk is durable
– The only atomicity guarantee is that a disk block write is atomic

• Once again, obvious naïve solutions exist that work, but that are too
expensive.
– E.g. The shadow copy solution we saw earlier

• Make a copy of the database; do the changes on the copy; do an
atomic switch of the dbpointer at commit time

– Goal is to do this as efficiently as possible

STEAL vs NO STEAL, FORCE vs NO FORCE

• STEAL:
– The buffer manager can steal a (memory) page from the

database
• ie., it can write an arbitrary page to the disk and use

that page for something else from the disk
• In other words, the database system doesn’t control the

buffer replacement policy
– Why a problem ?

• The page might contain dirty writes, ie., writes/updates
by a transaction that hasn’t committed

– But, we must allow steal for performance reasons.

• NO STEAL:
– Not allowed. More control, but less flexibility for the

buffer manager.

STEAL vs NO STEAL, FORCE vs NO FORCE

• FORCE:
– The database system forces all the updates of a transaction

to disk before committing
– Why ?

• To make its updates permanent before committing
– Why a problem ?

• Most probably random I/Os, so poor response time and
throughput

• Interferes with the disk controlling policies
• NO FORCE:

– Don’t do the above. Desired.
– Problem:

• Guaranteeing durability becomes hard
– We might still have to force some pages to disk, but

minimal.

STEAL vs NO STEAL, FORCE vs NO FORCE:
Recovery implications

Force

No Force

No Steal Steal

Desired

Trivial

STEAL vs NO STEAL, FORCE vs NO FORCE:
Recovery implications

• How to implement A and D when No Steal and Force ?
– Only updates from committed transaction are written to

disk (since no steal)
– Updates from a transaction are forced to disk before

commit (since force)
• A minor problem: how do you guarantee that all

updates from a transaction make it to the disk
atomically ?

–Remember we are only guaranteed an atomic block
write

–What if some updates make it to disk, and other
don’t ?

• Can use something like shadow copying/shadow
paging

– No atomicity/durability problem arise.

Terminology
• Deferred Database Modification (write at commit time):

– Similar to NO STEAL, NO FORCE
• Not identical

– Only need redos, no undos
– We won’t cover this today

• Immediate Database Modification (write anytime):
– Similar to STEAL, NO FORCE
– Need both redos, and undos

Log-based Recovery
• Most commonly used recovery method
• Intuitively, a log is a record of everything the database

system does
• For every operation done by the database, a log record is

generated and stored typically on a different (log) disk
• <T1, START>
• <T2, COMMIT>
• <T2, ABORT>
• <T1, A, 100, 200>

– T1 modified A; old value = 100, new value = 200

Log
• Example transactions T0 and T1 (T0 executes before T1):

T0: read (A) T1 : read (C)

A: - A - 50 C:- C- 100
write (A) write (C)
read (B)
B:- B + 50
write (B)

• Log:

Log-based Recovery
■ Assumptions:

 Log records are immediately pushed to the disk as soon as they are
generated

 Log records are written to disk in the order generated

A log record is generated before the actual data value is updated

 Strict two-phase locking

 The first assumption can be relaxed

As a special case, a transaction is considered committed only after
the <T1, COMMIT> has been pushed to the disk

■ But, this seems like exactly what we are trying to avoid ??

 Log writes are sequential

 They are also typically on a different disk

■ Aside: LFS == log-structured file system

Log-based Recovery■ Assumptions:

 Log records are immediately pushed to the disk as soon as they are
generated

 Log records are written to disk in the order generated

A log record is generated before the actual data value is updated

 Strict two-phase locking

 The first assumption can be relaxed

As a special case, a transaction is considered committed only after
the <T1, COMMIT> has been pushed to the disk

■ NOTE: As a result of assumptions 1 and 2, if data item A is updated,
the log record corresponding to the update is always forced to the
disk before data item A is written to the disk

 This is actually the only property we need; assumption 1 can be
relaxed to just guarantee this (called write-ahead logging)

Using the log to abort/rollback
• STEAL is allowed, so changes of a transaction may have

made it to the disk

• UNDO(T1):
– Procedure executed to rollback/undo the effects of a

transaction
– E.g.

• <T1, START>
• <T1, A, 200, 300>
• <T1, B, 400, 300>
• <T1, A, 300, 200> [[note: second update of A]]
• T1 decides to abort

– Any of the changes might have made it to the disk

Using the log to abort/rollback
• UNDO(T1):

– Go backwards in the log looking for log records belonging
to T1

– Restore the values to the old values
– NOTE: Going backwards is important.

• A was updated twice
– In the example, we simply:

• Restore A to 300
• Restore B to 400
• Restore A to 200

– Note: No other transaction better have changed A or B in
the meantime
• Strict two-phase locking

Using the log to recover
• We don’t require FORCE, so a change made by the committed

transaction may not have made it to the disk before the system
crashed
– BUT, the log record did (recall our assumptions)

• REDO(T1):
– Procedure executed to recover a committed transaction
– E.g.

• <T1, START>
• <T1, A, 200, 300>
• <T1, B, 400, 300>
• <T1, A, 300, 200> [[note: second update of A]]
• <T1, COMMIT>

– By our assumptions, all the log records made it to the disk
(since the transaction committed)

– But any or none of the changes to A or B might have made it
to disk

Using the log to recover
• REDO(T1):

– Go forwards in the log looking for log records belonging to
T1

– Set the values to the new values
– NOTE: Going forwards is important.
– In the example, we simply:

• Set A to 300
• Set B to 300
• Set A to 200

Idempotency
• Both redo and undo are required to idempotent

– F is idempotent, if F(x) = F(F(x)) = F(F(F(F(…F(x)))))
• Multiple applications shouldn’t change the effect

– This is important because we don’t know exactly what
made it to the disk, and we can’t keep track of that

– E.g. consider a log record of the type
• <T1, A, incremented by 100>
• Old value was 200, and so new value was 300

– But the on disk value might be 200 or 300 (since we have
no control over the buffer manager)

– So we have no idea whether to apply this log record or
not

– Hence, value based logging is used (also called physical), not
operation based (also called logical)

Log-based recovery
• Log is maintained

• If during the normal processing, a transaction needs to abort
– UNDO() is used for that purpose

• If the system crashes, then we need to do recovery using
both UNDO() and REDO()
– Some transactions that were going on at the time of crash

may not have completed, and must be aborted/undone
– Some transaction may have committed, but their changes

didn’t make it to disk, so they must be redone
– Called restart recovery

Restart Recovery (after a crash)
• After restart, go backwards into the log, and make two lists

– How far ?? For now, assume till the beginning of the log.

• undo_list: A list of transactions that must be undone
– <Ti, START> record is in the log, but no <Ti, COMMIT>

• redo_list: A list of transactions that need to be redone
– Both <Ti, START> and <Ti, COMMIT> records are in the

log

• After that:
– UNDO all the transactions on the undo_list one by one
– REDO all the transaction on the redo_list one by one

Restart Recovery (after a crash)
• Must do the UNDOs first before REDO

– <T1, A, 10, 20>
– <T1, abort> [[so A was restored back to 10]]
– <T2, A, 10, 30>
– <T2, commit>

• If we do UNDO(T1) first, and then REDO(T2), it will be
okay

• Trying to do other way around doesn’t work

• NOTE: In reality, most system generate special log records
when transactions are aborted, and in that case, they have to
do REDO before UNDO
– However, our scheme doesn’t, so we must do UNDO

before REDO

Checkpointing
• How far should we go back in the log while constructing

redo and undo lists ??
– It is possible that a transaction made an update at the

very beginning of the system, and that update never
made it to disk
• very very unlikely, but possible (because we don’t do

force)
– For correctness, we have to go back all the way to the

beginning of the log
– Bad idea !!

• Checkpointing is a mechanism to reduce this

Checkpointing
• Periodically, the database system writes out everything in

the memory to disk
– Goal is to get the database in a state that we know (not

necessarily consistent state)
• Steps:

– Stop all other activity in the database system
– Write out the entire contents of the memory to the disk

• Only need to write updated pages, so not so bad
• Entire === all updates, whether committed or not

– Write out all the log records to the disk
– Write out a special log record to disk

• <CHECKPOINT LIST_OF_ACTIVE_TRANSACTIONS>
• The second component is the list of all active

transactions in the system right now
– Continue with the transactions again

Restart Recovery w/ checkpoints
• Key difference: Only need to go back till the last checkpoint
• Steps:

– undo_list:
• Go back till the checkpoint as before.
• Add all the transactions that were active at that time,

and that didn’t commit
–e.g. possible that a transactions started before the

checkpoint, but didn’t finish till the crash
– redo_list:

• Similarly, go back till the checkpoint constructing the
redo_list

• Add all the transactions that were active at that time,
and that did commit

– Do UNDOs and REDOs as before

Recap
• Log-based recovery

– Uses a log to aid during recovery

• UNDO()
– Used for normal transaction abort/rollback, as well as

during restart recovery

• REDO()
– Used during restart recovery

• Checkpoints
– Used to reduce the restart recovery time

Write-ahead logging
• We assumed that log records are written to disk as soon as

generated
– Too restrictive

• Write-ahead logging:
– Before an update on a data item (say A) makes it to disk,

the log records referring to the update must be forced to
disk

– How ?
• Each log record has a log sequence number (LSN)

–Monotonically increasing
• For each page in the memory, we maintain the LSN of

the last log record that updated a record on this page
–pageLSN

• If a page P is to be written to disk, all the log records
till pageLSN(P) are forced to disk

Write-ahead logging
• Write-ahead logging (WAL) is sufficient for all our purposes

– All the algorithms discussed before work

• Note the special case:
– A transaction is not considered committed, unless the <T,

commit> record is on disk

Other issues
• The system halts during checkpointing

– Not acceptable
– Advanced recovery techniques allow the system to

continue processing while checkpointing is going on

• System may crash during recovery
– Our simple protocol is actually fine
– In general, this can be painful to handle

• B+-Tree and other indexing techniques
– Strict 2PL is typically not followed (we didn’t cover this)
– So physical logging is not sufficient; must have logical

logging

Other issues
• ARIES: Considered the canonical description of log-based recovery

– Used in most systems
– Has many other types of log records that simplify recovery

significantly

• Loss of disk:
– Can use a scheme similar to checkpoining to periodically

dump the database onto tapes or optical storage
– Techniques exist for doing this while the transactions are

executing (called fuzzy dumps)

• Shadow paging:
– Read up

Recap
• STEAL vs NO STEAL, FORCE vs NO FORCE

– We studied how to do STEAL and NO FORCE through
log-based recovery scheme

Force

No Force

No Steal Steal

Desired

Trivial Force

No Force

No Steal Steal

REDO
UNDO

NO REDO
NO UNDO

NO REDO
UNDO

REDO
NO UNDO

Recap
• ACID Properties

– Atomicity and Durability :
• Logs, undo(), redo(), WAL etc

– Consistency and Isolation:
• Concurrency schemes

– Strong interactions:
• We had to assume Strict 2PL for proving correctness of

recovery

