Nico Zazworka and Christopher Ackermann

Detecting Anomalies in the Communication of Aerospace Systems
We are proposing to modify a pattern matching algorithm studied in class and apply it to a problem in the software engineering domain. 

A. Context

Software systems in the aerospace domain communicate to together fulfill a larger task. For instance, retrieving images from a satellite and delivering them to the astrologists. The systems collaborate by communicating with each other. Frequently occurring issues lead to serious problems, such as a loss of data and a waste of resources. Detecting communication issues, however, is cumbersome due to its complexity and the lack of appropriate tool support.

A framework has been developed to record the communication behavior and visualize it in form of diagrams in order to support the manual analysis of the communication behavior. However, automated support is needed for detecting communication errors in a time efficient manner.

We are proposing to develop an algorithm for automatically validating the adherence of the communication behavior to it specification. 

B. Approach
The concrete goal is to compare an observed communication behavior and compare it to a protocol that specifies the expected behavior. The observed communication is a sequence of messages, while the protocol is a more complex specification that contains cardinalities for messages (see figure below).

[image: image1.emf]client server

Filter

BeginPlayback

loop

Data

EOT

loop


Figure 1: The observed communication (left) is to be compared to the protocol (right).
Validating the correctness of a communication in respect to a protocol can be defined as detecting the following two anomalies: (a) sending an unexpected message (additions), and (b) omitting a message (omissions). The goal of a validation algorithm is not only to detect whether or not anomalies exist in the communication but also what type of anomaly it is. Since exact matching algorithms use a greedy approach, they will not be able to judge whether a mismatch is an addition or an omission. Furthermore, an exact matching algorithm would terminate after the first mismatch occurred, which renders it ill suited for this task.
The advantage of inexact matching algorithms is that they recover from mismatches and one is able to derive more information pertaining the type of mismatch that occurred. Also, dynamic programming approaches generate a solution with the fewest possible edits, which translates well into the goal of generating a solution communication diagram that has the fewest deviations. This enables the user to focus on few issues and resolve them quickly.

C. Representing Communication as strings

In order to be able to apply algorithms studied in class we need to first convert the communication in a representation these algorithms operate on. The communication is a sequence of messages. To convert it into a string, we can represent each message with a unique character and write it in the order the messages occurred. In addition to the actual messages, the protocol also contains cardinality information, which needs to be included in the string representation of the protocol. A notation that is well suited for this task is regular expressions. 

D. Modifying an Inexact Matching Algorithm
We have stressed above that an inexact matching algorithms seems to be the appropriate choice for conducting the validation. However, dynamic programming tables and other inexact matching algorithms can only deal with character sequences and cannot compare them to a regular expression in which the protocol is represented. One of the challenges of this project is therefore to modify an existing inexact matching algorithm to compare character sequences to regular expressions. 
One idea to approach this issue is to use a state machine to represent the regular expression. Proceeding to the next character in the programming table would then translate into transition from one state into another. The algorithm would need to be extended with some notion of a state in order to track the currently active state. It is not yet clear what the implication are when a state has multiple transitions. This could be particularly an issue when the algorithm traces its way back to record the optimal solution. The algorithm needs to keep track of what transitions were taken in order to be able to provide this information.
When completed, this algorithm will be implemented in a tool that will be used for the validation of communication behaviors.












_1270409703.vsd
[guard]


[guard]


[guard]


[guard]


[guard]


[guard]


[guard]


[guard]


client

server

Filter


BeginPlayback


loop


Data


EOT


loop



