
Genome assembly validation

Introduction
A common thread in scientific computation is the fact that often the scientific answer that we 
seek is simply defined by the output of the program used to compute the answer. Given the fact 
that the results often represent previously unknown information, there is no external way to 
validate these results.  In other words, any bugs in the software are virtually undetectable. 

There are two recent examples that provide a compelling demonstration of this fact: 

• A paper in the journal Science had to be retracted once the authors realized that the 
results reported in the paper had been incorrectly computed due to a "+1/-1" error in 
their code.  The mistake was only detected a few years later when another research 
group failed to reproduce the results (in this case the scientific result was the 3D 
structure of a previously uncharacterized protein)

• When the records of climate researchers came under scrutiny due to an email leak, 
scientists and skeptics found out that the software that computes the climate models, 
and has predicted the effects of global warming, is full of bugs and poorly written code. 

Thus, a major challenge in bioinformatics and other scientific fields is to develop approaches for 
ensuring that the software is correct even in the absence of external means for validation.  Below 
I describe several ways in which validation can be achieved in the context of genome assembly.

Intrinsic measures of assembly quality
As mentioned in the assembly lecture, one of the early definitions of the goal of assembly is to 
determine a layout of the sequences that is consistent with the random process that generated 
these sequences in the first place.  While this goal is difficult to achieve during the assembly 
process, the divergence between the output of the assembler and the characteristics of the 
random shotgun process can be used to assess whether the assembly is correct.

Note that, in general, we do not fully know the characteristics of the sequencing process, 
however useful information can still be achieved by assuming the process to be fully random (in 
practice many biases cause deviations from randomness).

Coverage measures
If we assume that the shotgun process is truly random, we can expect the depth of coverage (# 
of reads spanning a particular location in the genome) to not vary much along the genome 
(other than random fluctuations from the expected value).  Regions where too many reads pile 
up can be inferred to represent collapsed repeats.  

There are several ways in which overly-deep regions can be determined.  A simple k-mer based 
measure can be determined as follows:



• for each k-mer count its number of occurrences in the set of reads. Let this value be nr(k). 
In unique regions this value should roughly equal the coverage c, while in repeats with 
R copies, the value will be approximately cR

• for each k-mer count its number of occurrences in the consensus of the contigs produced 
by the assembler. Let this value be nA(k).  In unique regions this value will be 1, while in 
repeats it will be R.

• for each k-mer compute nr(k)/nA(k) - if the assembly is correct (number of copies of a 
repeat in the genome matches the number of copies in the assembled contigs) the ratio 
will be roughly c.  If, however, certain repeats are collapsed, the ratio will be 
correspondingly higher - allowing us to detect regions where a collapse might have 
occurred.

A more principled solution is to statistically evaluate whether the pile-up of reads is truly 
"surprising" given our expectation of the random process generating the sequences.  Such an 
approach is implemented as the A-statistic used in Celera Assembler.  Specifically, assume that 
the expected arrival rate (number of DNA sequences divided by length of genome) is α, then 
the probability that k sequences  start every ρ base-pairs within a unique region is:
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The log ratio of these two values represents the A-statistic:
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Negative values indicate that more "arrivals" occur within a region than expected, i.e. the region 
represents a collapsed repeat.

It is important to note that the background arrival rate α needs to be estimated from the 
assembly data, as generally the genome size is not known before running the assembly. This 
creates somewhat of a chicken and egg problem - information obtained from the assembly is 
used to evaluate the assembly.  If errors are rare, this process should, however, allow the 
detection of outliers (misassemblies), as the misassemblies cannot significantly affect the 
statistics.

Mate-pair consistency
In addition to sequences, a typical sequencing experiment also provides mate-pair information - 
information specifying that pairs of sequences are separated by a given (approximate) distance, 



and that they have a specific orientation (usually the two sequences are in opposite orientations 
- originate from different DNA strands).  In a correct assembly, the constraints imposed by this 
information should be preserved (modulo experimental error), i.e. the paired sequences must be 
oriented and spaced as inferred from the parameters of the sequencing project.  Any deviations 
from this ideal indicate the presence of a potential misassembly.

Several approaches can be used to detect disagreements between the experimental data and the 
information found in the assembly.  First, one can easily find groups of mate-pairs that are 
"broken"  because their corresponding endpoints are incorrectly oriented with respect to each 
other.  These indicate the presence of rearrangements or inversions in the assembly with respect 
to the correct structure of the genome.

In order to identify regions in the assembly where the distance between mates is different from 
the experimentally derived values, we can phrase the problem as a statistical hypothesis test:

• First compute the "correct" mate-pair spacing by averaging the lengths of mate-pairs 
found within the assembly.  As described under coverage statistics, this approach may 
be confused by misassemblies but should generally work if there are few misassemblies. 
Also, it is usually necessary to "second-guess" the biologists that generated the data 
given that the methods for measuring mate-pair sizes are highly inaccurate.  The result 
of this step are the values Ltrue, and SDtrue, the mean length and standard deviation of the 
"correct" mate-pairs.

• Second, use a sliding window through the assembly to identify the mate-pairs spanning 
each particular location in the assembly.  Compute Lassembly and SDassembly from the local 
mate-pair neighborhood

• Compare Ltrue and Lassembly using a statistical test, e.g. the t-test: 
∣Lassembly−Ltrue∣

SDtrue
The t-test provides an estimate of the statistical confidence in the disagreement between the two 
length estimates. The sign of the difference in length indicates whether the assembled region 
has been collapsed or expanded with respect to the correct assembly of the genome.  This 
simple test is also called the C/E statistic (Zimin et al.).

Detecting "missing" data
It is not uncommon for an assembler to only use part of the data provided as input, i.e. not all 
the sequence reads end up being used in the final assembly.  Valuable validation information 
can be obtained by mapping the unassembled sequences onto the assembly, in order to explain 
why they were not used by the assembler.  Several cases are possible:

1. Unassembled reads to not match the assembly - this indicates the reads are likely 
contaminant sequences.

2. Unassembled reads match the assembly perfectly - possibly bug in the assembler but 
that does not affect the quality of the reconstruction (though it can affect coverage 
estimates)



3. Unassembled reads match the assembly imperfectly, as shown in the figure below - this 
indicates that a tandem (2-copy) repeat has been collapsed into a single copy.  Sequences 
spanning the joint between the two copies cannot fit in the resulting assembly and get 
tossed out.

"Validation" as a tool for detecting genomic variation
The tools for assembly validation described above are not only valuable for assessing the 
quality of a genome assembly. Rather, there is increasing interest in understanding how the 
genome structure varies within a population.  E.g. in the human population there is increasing 
evidence that the genomes of different people, and even within a same person, differ by more 
than just simple mutations: entire segments of DNA are duplicated, deleted, or rearranged 
between the genomes. Also, certain phenotypic traits (e.g. hair/skin color) might be caused by 
differing copy numbers for certain genes.

In the context of genomic variation, we want to map sequences/mate-pairs generated from a 
person's DNA, to a reference sequence.  Discrepancies between the two datasets indicate places 
where there are structural differences between the two genomes.

Illustration 1: Alignment of reads to the assembly in a region where a tandem repeat has been collapsed.


