
	
  

3-2-2010 
Inexact Matches 
ABBA -> ABBA  (exact) 
ABA  -> AB-A  (insertion/deletion) 
ABCA -> ABCA  (substitution) 
ACA  -> A-CA  (insertion/deletion and substitution 
 
S1 – S2 
Edit (Levenshtein) Distance: What is the min # of edits 
(insertion, deletions, substitutions) made to S1 to change 
to S2? 
 
Example: 
ABCA ---> ABCA 
ACA  ---> A-CA  <- this is the correct alignment 
ACA  -x-> AC-A 
 
    1________i_ 
S1  |_______|o|_____________ 
 
    1________j_ 
S2  |_______|o|_____________ 
 
 
E is edit distance between prefixes 
 
E[i,j] = min: 
-> E[i-1,j-1] + 1 if S1[i] != S2[j] 
              + 0 otherwise 
-> E[i,j-1] + 1 
-> E[i-1,j] + 1 
 
 
Fill dynamic programming array: 
 
  -AG...        n 
-|012...        n 
 |1 
 |2    (some 
 |.    boxes) 
 |. 
 |. 
 |        (with 
m|m       arrows) 
 
There’s a much prettier picture here: 
http://lslwww.epfl.ch/biowall/VersionE/ApplicationsE/Sequen
ceE.html 



	
  

 
List of Important Concepts(? I was distracted making that 
table when he was talking about this) 
 
Global Alignment 
 
Local Alignment – Did substrings in S1 & S2 that have the 
lowest edit distance 
 
Gap Penalties – Pay for gaps as a block 
 
 



	
  

3-4-2010 
Kun-Mao Chao, William R. Pearson, Webb Miller. Aligning two 
sequences within a specified diagonal band. Bioinformatics 
8(5):481-487. 
bioinformatics.oxfordjournals.org/cgi/reprint/8/5/481 

- This paper covers most of the material being covered 
on the midterm. PRINT THIS OUT! 

 
ACTAA-CT 
|  || || 
AG-AATCT 
 
3 cases for variation: 
-Insertion 
-Deletion 
-Substitution 
 
E[i,j] = min{ E[i-1,j-1] +{ 1  S1[i] != S2[j] 
                          { 0  S1[i] == S2[j] 
            { E[i,j-1]+1 
            { E[i-1,j]+1 
 
(insert dynamic programming array and brief review) 
 
_______________________________ 
|              |//////////////| 
|              |//////////////| 
|              |//////////////| 
|              |//////////////| 
|              |//////////////| 
|              |//////////////| 
|______________|//////////////| 
|//////////////|              | 
|//////////////|              | 
|//////////////|              | 
|//////////////|              | 
|//////////////|              | 
|//////////////|              | 
|//////////////|______________| 
 
 

- Determine middle row 
- Compute score to that box starting from both the top 

left and bottom right 
- Identify box with lowest combined score 
- Using that as 2-way midpoint, divide the array into 

quadrants 
- Discard the upper right, and lower left quadrants 



	
  

- Repeat the algorithms on the upper left, and lower 
right quadrants 

 
Run Time: 

- n2 for the first round 
- n2/2 for the second round 
- etc… 
- Approaches 2n2 run time 

 
 
To account for runs of gaps: 
g(n) = cost of n gaps in a row 
g(n) = f(g(n-1)) 
g(n) = go + gen 
 go = cost of opening a gap 
 ge = cost of extending a gap 
 
E[i,j] = min{ E[i-1,j-1] +{ 1  S1[i] != S2[j] 
                          { 0  S1[i] == S2[j] 
            { min k<j  E[i,j-k]+g(k) 
            { E[i-1,j]+1 
 
Improvement  Store scores in 3 different tables: 
E  scores of alignments ending in gaps in S1 
F  scores of alignments ending in gaps in S2 
G  scores of alignments ending with aligned characters 
 
V = min(E,F,G)  score of alignment 
 
E[i,j] = { E[i,j-1] + ge 
         { V[i,j-1] + ge + go 

 


