Inexact Matches

```
ABBA -> ABBA (exact)
ABA -> AB-A (insertion/deletion)
ABCA -> ABCA (substitution)
ACA -> A-CA (insertion/deletion and substitution
```

S1 - S2
Edit (Levenshtein) Distance: What is the min \# of edits
(insertion, deletions, substitutions) made to S1 to change
to S2?
Example:
ABCA ---> ABCA
ACA ---> A-CA <- this is the correct alignment
ACA -x-> AC-A
S1

S2

E is edit distance between prefixes
E[i,j] = min:
-> E[i-1,j-1] + 1 if S1[i] != S2[j]
+ O otherwise
-> E[i,j-1] + 1
-> E[i-1,j] + 1

Fill dynamic programming array:

There's a much prettier picture here:
http://lslwww.epfl.ch/biowall/VersionE/ApplicationsE/Sequen ceE.html

List of Important Concepts(? I was distracted making that table when he was talking about this)

Global Alignment
Local Alignment - Did substrings in S1 \& S2 that have the lowest edit distance

Gap Penalties - Pay for gaps as a block

Kun-Mao Chao, William R. Pearson, Webb Miller. Aligning two sequences within a specified diagonal band. Bioinformatics 8(5):481-487.
bioinformatics.oxfordjournals.org/cgi/reprint/8/5/481

- This paper covers most of the material being covered on the midterm. PRINT THIS OUT!

3 cases for variation:
-Insertion
-Deletion
-Substitution
$\begin{aligned} E[i, j]=\min \{E[i-1, j-1]+\{ & 1 \notin S 1[i]!=S 2[j] \\ \{0 \notin S 1[i]= & S 2[j]\end{aligned}$
\{ $E[i, j-1]+1$
\{ $E[i-1, j]+1$
(insert dynamic programming array and brief review)

- Determine middle row
- Compute score to that box starting from both the top left and bottom right
- Identify box with lowest combined score
- Using that as 2-way midpoint, divide the array into quadrants
- Discard the upper right, and lower left quadrants
- Repeat the algorithms on the upper left, and lower right quadrants

Run Time:

- n^{2} for the first round
- $n^{2} / 2$ for the second round
- etc...
- Approaches $2 n^{2}$ run time

To account for runs of gaps:
$\mathrm{g}(\mathrm{n})=$ cost of n gaps in a row
$g(n)=f(g(n-1))$
$g(n)=g_{\circ}+g_{e} n$
$g_{\circ}=$ cost of opening a gap
$g_{\mathrm{e}}=$ cost of extending a gap
$E[i, j]=\min \{E[i-1, j-1]+\{1 \leqslant S 1[i]!=S 2[j]$
\{ $0 \leqslant S 1[i]==S 2[j]$
$\{\min k<j \rightarrow E[i, j-k]+g(k)$
\{ $E[i-1, j]+1$
Improvement \rightarrow Store scores in 3 different tables:
$\mathrm{E} \rightarrow$ scores of alignments ending in gaps in S 1
$\mathrm{F} \rightarrow$ scores of alignments ending in gaps in S 2
$G \rightarrow$ scores of alignments ending with aligned characters
$\mathrm{V}=\min (\mathrm{E}, \mathrm{F}, \mathrm{G}) \rightarrow$ score of alignment
$E[i, j]=\left\{E[i, j-1]+g_{e}\right.$
\{ V[i,j-1] $+g_{e}+g_{\circ}$

