Lecture Notes by Raul Guerra

Binary Search in Suffix Arrays

“A suffix array is basically a sorted list of all the suffixes of P” (p.320, Manber,Myers).
For these lecture notes, P is the pattern and T is the text.

Running time from a typical binary search between the suffix array of P and T (to
find the suffix of P that matches the biggest amount of characters with T) is
O(|P|*log|T|),the |P|* comes up because of the characters in the strings that
need to be compared.

With the help of some precomputed information a binary search between T and the
suffix array of P can be improved from 0(|P|*10og|T|) to0(|P|+1log|T|).This
precomputed information is the LCP. We utilize the LCP to figure out whether to recurse
to the left side or right side of the middle point M in a binary search.

LCP(x,y) //LENGTH of the Longest Common Prefix of Strings x & vy
Lets define h = max(LCP(L,P) , LCP(P,R))

L //Left boundary of Binary search, L is a suffix of P in the suffix
array

R //Right boundary of Binary search, R is a suffix of P in the suffix
array

M //Midpoint suffix between L and R in the Binary search, M is a suffix
of P in the suffix array

Use of LCP values in binary search
//Assumming LCP(L,P) >= LCP(P,R) we can focus only on the left side.

Cases

LCP(L,P)

if LCP(L,M) > LCP(L,P)

then

recurse on right and LCP(L,P) remains unchanged

M
L R

~ LCP(L,M)

if LCP(L,M) == LCP(L,P)

then

Compare with middle to see if it is to the right of the Left
part, match characters to decide where side to recurse on

We need to compare only the LPC(L,P)+1st symbol, LPC(L,P)+2nd
symbol, and so on, until we find one, say LPC(L,P) + j, such that
the LPC(L,P) + jth symbol determines whether to recurse on the
Left side or Right side. In either case the new value for

LCP(L,P) or LCP(P,R) is LCP(L,P)+j. //See pag. 322 of Manber and
Myers paper.

Compare to find j

if LCP(L,M) < LCP(L,P)
then
recurse on left and LCP(P,R) = LCP(L,M)

M

LCP(L,P)

If we assume the LCP values are given, then work at each given step of the binary
search is either constant or consists in comparing a small part of the characters in
the middle string.

NOTES
As the range in the Binary Search decreases LCP increases. Also we don’t compare
middle characters twice

Computation of LCP values from suffix trees

How many (L,R) pairs do we need to compute the LCP values we need?

We first compute the LCP of adjacent suffixes, LCP 1,2|2,3|3,4| ... Then we figure
out which are the suffixes that can arise in the inner loop of the binary search. We
compute the LCP for every node that would be in a binary search tree of the suffixes.
The LCP of a parent node in the tree will equal the minimum LCP of the children.

(Source http:

To calculate the LCP of two adjacent suffixes we utilize a Suffix tree.

SUFFIX TREE

LCP(1,2)
LCP(5,6)
1
3
6
2
4 5
LEXICOGRAPHICAL ORDER

The LCP value can be calculated by keeping track of the highest point between two
lexicographically adjacent leaves. In the image above, the leaves are ordered
“lexicographically”. I use quotations because all suffixes that have equal p-prefixes
must appear in consecutive positions in the lexicographically ordered suffix tree.
However that is not the case in the tree. However in this example Prof. Pop wanted
to show the concept of what the highest point between two leaves would be.

Trick to sorting the suffixes in linear time

The trick is Radix sort

— Suffixes not sorted

i+h

Suffixes
I sorted

|, j+h = lexicogra

phically

If the first h characters are equal between i and j, then their lexicographical
ordering depends on the ordering of the suffixes (i + h) and (j + h) .We can
utilize this idea to sort the suffixes.

| | | |

"} All suffixes in each of

Buckets

these bucket share the
first character. h=1

Create buckets and put in them all the suffixes that share the first h characters. Then
fuse buckets 1og N times, doubling the value of h each time.

Example

One letter

ANA BANANA

A B

Two letters

h=2

ANA
A ANANA BANANA

NANA
NA

NANA
NA

A$ AN BA NA

Four letters

h=4

A ANAS$ ANANA
ASS$ ANA$ ANAN

BANANA NAS$S NANA
BANA NAS$S NANA

This sortis 0(NLogN) as opposed to O(N*2LogN)

Memory Complexity = (NLogN) //The LogN comes from the bits used to
store the numbers

Burrows-wheeler transform

Construction

Transformation
Inout All Sort the Outout
P Rotations Rows b

| "BANANAE || ANANAE“B !

. @"BANANA . ANAE"BAN .
prmmmmmmm— - ! A@“BANAN ' A@"BANAN ;|-------------- .
LA || NAE@"BANA . BANANAE" | A :
| BANANAE || ANAG°BAN | NANAG°BA || BNN"AAEA
Cosooooonoooos “|i NANAEG"BA .|: NA@"BANA ;|-------------- -

. ANANAE"B . “BANANA@

© BANANAE® | E"BANANA |

(Source Wikipedia’s Burrows-Wheeler transform entry)

