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In class we came across a metric that required us to compute the number of spanning trees of a graph. We
provide here some discussion on how this is done (efficiently) using spectral graph theory (essentially graph theory
+ linear algebra). Some of the notation and definitions are borrowed from Wikipedia’s relevant articles. We start
with some basic definitions that we will need.

Definition (Spanning Tree). Given a connected undirected graph G = (V,E), a spanning tree is a subgraph
H ⊆ G such that H is a tree over the entire vertex set of G.

Definition (Graph Laplacian). Given an undirected graph with an ordering of its vertices (v1, v2, . . . , vn), the
Laplacian matrix L (G) is defined to be a n× n matrix with the following entries:

`i,j =

 deg (vi) if i = j
−1 if vi is adjacent to vj

0 otherwise

That is, the diagonal elements have values equal to the degree of the corresponding vertices, and the off-diagonal
elements are -1 if an edge connects the two vertices, and 0 otherwise.

The Laplacian matrix of a graph has many interesting properties. In particular, one can show that for a
connected graph, it’s Laplacian matrix has n− 1 non-zero eigen values. This is used in the following theorem.

Theorem (Kirchhoff’s Matrix Tree Theorem). For a given undirected connected graph G with n vertices, let
λ1, . . . , λn−1 be the non-zero eigenvalues of L (G). Then, the number of distinct spanning trees of G is equal to

t (G) =
1
n

n−1∏
i=1

λi

Equivalently, t (G) is equal to the absolute value of any cofactor of the Laplacian matrix of G.

As an example, consider two examples, show in Figure 1 and Figure 2.
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34

L (G) =


3 −1 −1 −1

−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


λ1 = 4
λ2 = 4
λ3 = 2
λ4 = 0

t (G) =
1
4
(4)(4)(2) = 8

Figure 1: Example graph, with Laplacian matrix and eigenvalues. Numbers near
each vertex indicate the chosen ordering. The total number of spanning trees can be
seen to be 8 by inspection, which matches with Kirchhoff’s theorem.

We will now provide some intuition as to why Kirchhoff’s theorem is correct. From spectral graph theory,
we know that the Laplacian matrix of a graph G can be decomposed into the product of the incidence matrix E
with it’s transpose:

L (G) = EET
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L (G) =


3 −1 −1 −1 0 0

−1 1 0 0 0 0
−1 0 1 0 0 0
−1 0 0 3 −1 −1

0 0 0 −1 2 −1
0 0 0 −1 −1 2


λ1 ≈ 4.5646
λ2 = 3
λ3 = 1
λ4 = 1
λ5 ≈ 0.4384
λ6 = 0

t (G) =
1
6
(4.5616)(3)(1)(1)(0.4384) = 3

Figure 2: 2nd example graph, with Laplacian matrix and eigenvalues. Numbers near
each vertex indicate the chosen ordering. The total number of spanning trees can be
seen to be 8 by inspection, which matches with Kirchhoff’s theorem.

The incidence matrix E for a graph with n nodes and m edges is a n×m matrix which indicates which edges are
incident on which nodes. We assume both the edges and nodes are given an ordering. Using the ordering of the
nodes, we impose a direction on each edge such that the edge points from the lower-ordered vertex to the higher
ordered vertex. The entries of the incidence matrix are defined as follows:

ai,j =

 1 if edge ej points out from vi

−1 if edge ej points to vi

0 otherwise

E1 =


1 1 1 0 0

−1 0 0 1 0
0 −1 0 −1 1
0 0 −1 0 −1

 E2 =


1 1 1 0 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 1 1 0
0 0 0 −1 0 1
0 0 0 0 −1 −1


Figure 3: Incidence matrices of the two example graphs using the same node orderings
as before and for a fixed edge ordering. Incidence matrices resulting from other edge
orderings would be column permutations of the display matrices.

The incidence matrices for the two example graphs are shown in Figure 3. We wish to talk about the minor
det (M11) of the Laplacian matrix L, i.e. the determinant of the matrix resulting from the removing the first row
and column from L. We know that L = EET , so by letting F be the matrix produced by removing the first row
from E, we can relate F to M11 in a similar way: M11 = FFT . We now utilize a theorem by Cauchy and Binet:

Theorem (Cauchy-Binet formula). Let A be a m × n matrix and B be an n ×m matrix. We write [n] for the
set {1, 2, . . . , n} and

(
[n]
m

)
for all m-size subsets of [n]. For any S ∈

(
[n]
m

)
, A[m],S is the m×m matrix produced by

taking from A only the columns that are indexed by S. Similar notation is used for B, except instead we select
rows by index instead of columns. Then,

det (AB) =
∑

S∈([n]
m)

det
(
A[m],S

)
det

(
BS,[m]

)
We will apply the Cauchy-Binet formula to the relationship M11 = FFT . Thus, we have

det (M11) =
∑
S

det (FS) det
(
FT

S

)
=

∑
S

det (FS)2
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Note here that M11 is of size (n − 1) × (n − 1), so S is chosen over n − 1 sized subsets of {2, 3, . . . ,m}, and
thus S specifies n − 1 columns of F that constitute FS . We can think of this subset S as all possible choices
of n − 1 edges. As all trees have n − 1 edges, each choice of S could map to a choice of a spanning tree. We’d
like to decide which of these choices of S represent spanning trees, and which do not. Fortunately, there is a
relationship between the determinant of FS and exactly this. We claim (without proof) that det (FS) is equal
to -1 or 1 if and only if the edges specified by S induce a spanning tree, and the determinant is equal to 0 iff S
does not. Thus, det (FS)2 becomes an indicator variable for a choice of S which takes the value 1 if S induces a
spanning tree, and 0 otherwise. The right-hand summation of the above equation therefore is a count of the total
number of spanning trees, which (by the Cauchy-Binet formala) is equivalent to minor det (M11). Our argument
is symmetric for other selected minors (say an arbitrary minor det (Mij).

Thus we have that the determinant of a minor of of L (G) is equal to the number of spanning trees. There is
a result (although I’m not sure where it is to reference it) that shows equivalence between the these minors and
the alternative expression 1

n

∏
i λi.
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