Contents

Preface Aidi
1 Exact String Matching: The Fundamental String Problem]
i Exact Matching: Fundamental Preprocessing and First-Algorithms 3
11 The naive method 5
1.2 The preprocessing approach - - 6
1.3 TFundamental)z‘t,pmcﬂe‘;smé, of the pattern _ 7
L4 Fundamental p;t_gmcessmgp in lnear time _ g
1.5 The simplest’ hnmr»tzme: exact matahtw algorithm 10
1.6 Exerciges B!

2 Exact Matching: Classical Comparison-Based Methods 16
2.1 Inwoduction . ' i6
2.2 The BoyumMmm Algorithm 16
2.3 The Knuth-Maorris- Pmt algorithm 23
2.4 Real-time string matching 27
2.5 Exercises 29

3 Exact Matching: A Deeper Look af Classical Methods 35
3.1 A Boyer-Moore variant with a “simple” linear time bound 33
3.2 Cole’s linear worst-case bound for Boyer— M(‘:cm, - _ 39
3.3 The original preprocessing for Kauth- Morns Pratt ' L 48
34 Exact matching with a set of imita,ms ' . . o582
3.5 Three applications of exact set matf,hma, _ _ 61
3.(: Regular expression patlern matching . G5
A7 . Exercises o &7

4 Seminumerical String Matching , R 70
4.1 Arithmeiic versus comparison-based methods 740
42 T he Shift-And method . 70
4.3 The match-count problem and Fast Fourier Tmmiorm 73
4.4 Kdrme&bm hngerpr;m methods for exact match 77
4.5 Exercises 34

viii CONTENTS

H Suffix Trees and Their Uses

i
5 Introduction to buffix Trees

1 A-shorthistory....-
5.2 Basic definitions
83 A motivating example
54 A naive algorithm to build a suffix tree

6 Linear-Time Constraciion of Suffix Trees

6.8 Ukkonen’s Hnear-time suffix tree algorithin
6.2 Weiner's Hinear-time suffix tree algorithm
6.3 McCreight’s suffix tree algorithm

6.4 Generatized suffix tree for a set of strings
6.5 Practeal implementation issues

6.6 Hxercises

7 First Applications of Suftix Trees

7.0 APLI: Exact string matching

7.2 APL2: Suffix trees and the exact set maiching problem

7.3 APL3: The substring probiem for a database of patterns

7.4 APL4: Longest commaon substring of two strings

7.5 APLS: Recognizing DNA contamination

74 APLE: Common substrings of more than two strings

71 APLY: Building a smaller direcied graph for exact matching
7.8 APLS: A reverse role for suffix wees, and major space reduction
7.8 APLY: Space-efficient fongest common substring algorithm
716 APL10: All-pairs suffix-prefix matching

731 Introduction to repetitive structures in molecular strings

7.12 APL1I: Finding all maximal repetitive strucuures i iaa;edg time
7.3 APL1Z: Circolar siving lnearization

714 APLI3: Suffix arays — more space reduction '

7.5 APLI14: Suffix trees in gem)mg«scale projects

7.16 APLI5: A Boyer-Moore approach to exact set matching

7.07 APLLG: Ziv-Lempel data compression

T.A8 APLIT: Minimum length encoding of DNA

719 Additional applications

720 Baercises

8 Constant-Time Lowest Commen Ancestor Retrieval

8.1 Iatroduction
82 The assumed machine model
8.3 Complete binary trees: a very simple case
84 How o solve lea queries in B
8.5 Firststeps in mapping 7 to BB
B8 Themappingof T to B
87 The linear-time preprocessing of T
8.8 Answering an lea query in constant ime
%9 The binary tree is only conceptual

87
89

90
90
91
93

94

94
107
115
1i6
116
119

122
123
124
125
125
127
129
132
135
135
138
143
£48
149
156
i57
164
167
168
164

181

181
182
182
183
184
186
188
189
191

CONTENTS ix

8.10 For the purists: how to-avoid bit- }wc,i operations 192
8,11 Exercises : 193

9 More Applications of Suffix Trees 196
9.1 Longest common extension: a bridge to inexact matching 196

9.2 Finding all maximal palindromes in linear time 197

9.3 Exact matching with wild cards : 199

9.4 The k-mismatch problem . 200

9.5 Approximate palindromes and repeats _ 201

9.6 Vaster methods for tandeim repeats 202

9.7 A linear-time solution to the multiple common substring problem 205

9.8 Uxercises 207

i1 Inexact Matching, Sequence Alignment, Dynamic Program'ming 209
10 The hmportance of (Subjsequence Comparison in Molecular Biology 212
11 Core String Edits, Alighlhéﬁt's, and Dynamic Pr{igramming ' 215
111 Entmdum(m : 215
11.2 The edit d:stdme hetween two strings . 213
iL.3 Dynamic programming calculation of edit distance 217
i1.4 Edit graphs 223
i1.5 Weighted edit distance 224
1.6 Suing similarity 228
117 lLocal alignment: finding substrings of hlg,h similarity ' 230
1.8 Gaps : w235
11.9 Exercises 245

12 Refining Core String Edits and Alignments 254
12.1 Computing alignments in only linear space 254
12.2 Faster algorithms when the number of diffl;,l”t‘ﬁu.\ are mmnded] ; 259
12.3 Exclusion methods: faist prcuud mmmg time ' 270
124 Vet more suffix trees and more hybrid dynamm prcsgmmmmg o C279
125 A faster (combinatorial) algerithm for mngt,st common subsequemc 287
12.6 Convex gap weights _ 293
12.7 The Four-Russtans speedup o & _ 302
12.8 Exercises . 308

13 Extending the Core Problems : - 312
131 Pasametric seé}uen.ée alignment 32
13,2 Computing suboptimal alignments o 321
133 Chaining diverse local alignmenis ©325
13.4 Exercises h 39

14 Multiple String Comparison — The Hely Grail : - 332
14.1 Why multiple string comparison? 332
14.2 Three “big-picture” biological uses for multiple string comparison 335

14.3 Family and superfamily representation 336

14.4
14.5
14.6
14.7
i4.8
148
14.10
4.1

CONTENTS

Multiple setjuence comparison for structural inference -
Introduction to computing multiple string alignments

Multiple alignment with the sum-of-pairs (5F) objective function
Multiple alignment with consensus objective functions '
Mulliple alignment to a (phylogenetic) tree

Conunenis onbounded-error approximations

Common multiple alignment methods

Exercises

15 Sequence Databases and Their Uses — The Mother Lode

g
152
153
i5.4
15.5
156
157
15.8
15.9
1519
15.11
1512

Success stories of database search

The database industry

Algorithmic issues in database search

Real sequence database search

FASTA

BLAST

PAM: the first major amino acid substitution matrices
PROSITE

BLOCKS and BLOSUM

The BLOSUM substitution matrices

Additional considerations for database searching
Exercises

IV Cuarrents, Cousins, and Cameos

16 Maps, Mapping, Sequencing, and Superstrings

16.1
16.2
16.3
16.4
i6.5
16.6
16.7
16.8
16.9
16.10
1611
- 16,42
16.13
£6.14
16.15

16.16 -

16.17
16.18
1619

A look at some DNA mapping and sequencing problems
Mapping and the genome project

Physical versus genetic maps _ e
Physical mapping _ h

Physical mapping: STS-content mapping and ordered clone libraries
Physical mapping: tadiatior-hybrid mapping

Physical mapping: fingerprinting for general map construction
Computing the tightest layout

Physical mapping: last comments

An introduction to map alignment

Large-scale sequencing and sequence assembly

Directed sequencing

Top-down, bottom-up sequencing: the picture using YACs
Shotgun DNA sequencing

Sequence assembly

Final comments on top-down, bottom-up sequencing

The shortest superstring problem

Sequencing by hybridization

Exercises

341
342
343
351
354
358
359
366

370

370
373
375
376
377
379
381
385
385
386
387
391

CONTENTS

t7 Strings and Evolutionary Trees

7.1 Ultrametric trees and ultrametric distances

17.2 Additive-distance trees

17.3 Parsimony: character-based evolutionary reconstruction

17.4 The centrality of the ultrametric problem

17.5 Maximum parsimony, Steiner trees, and perfect phyiogeny
17.6 Phylogenetic alignment, again

1777 Conpections between multiple alignment and tree construction
17.8 Exercises

18 Three Short Topics

18.1 Matching DNA to protein with frameshift errors

18.2 Gene prediction

18.3 Molecular computation; computing with (not about) DNA strings
184 Exercises

19 Models of Genome-Level Mutations | -

%1 Introduction -
19.2° Genowe rebrrangéments with inversions
19.3 Signed inversions
194 Exercises
Eptlogue - where next?
Bibliography
Glossary
Index

447
448

456

458
466
470
471
474
475

480

480
482
485
490

492

492
493
498
499
501

505
524
330

1

Exact Matching: Fundamental Preprocessing
and First Algorithms

i.1. The naive methed

Aimust :1” Lfiawssmm of exact mdtc,hm;ﬁ begm with the mrw mc*ﬁwd and we tollow

aompamﬂ. the Lhamt,tcrs Oi Pand T]Lft o ;zghi untll either twn unequa (,hdmcté,fs" tut
found or until P i is exhausted, in wh;e,,h case an oceurrence of P is n.,portt,d 1n either case,
P is then s nfied 011(, pfm,c (0 lhe I‘I}mht and the ¢ m"npdmom are restarted from the left

end of . ’“E‘h;s pmu,ss repcats_;mtxl the right end of 2 shifts pcsqi the right end of 7.

Usmg n io deﬂote the length of P and mto danote thr, Eength of T, [hl, wom Lase
number of mmpamﬁns mad by tlxzs method is (H)(nm) Ia p«zrﬂuxi&r ;1* both Pk and T
wm:st of the same repeditd

‘hayacter, then rhm, is an ou,arierace of Prat cach of ihb first
meni1 }?}QSEMOHS oi T aﬂd LE"l&‘ mfci wd performs fzmaiy n(m] mmpausms F‘ur
(,mmpie i P‘ = ﬁaa emd T = aacmmmzma th@ﬂ fows % m o= H} dilé 24 mmpaxlsons
are made.

“The IMiVL mu‘hnd is ws tamiy slmple to understand and pmgmm bui its worst-case
running tlm& of GG may be u;}mixsmttmy and can be m‘ipmved Fveu the pmmgai
mmung time of t%m naive method may be too sIQw f{)r larger texts and patterns. Early
on, there were wveml rulated ldé‘;d\, 0 improve the naive method, bc)th in practice and in
worst case, The rés "Jll. is 1i§a£ the & S X m) Worst-case buund can e recfm,t,d o On - m)
i"han«mw “x o “+” in the boungd is bxtremeiy ssg,mﬁctmt (try n == i(){){? and m =
10, OO(} OOO whmh ane ra,ahsim numhus in some app 3wtzans) '

1.1, Early;ide_:as for speeding up the nﬂive’mg:?éh_@@

The first ideas for speeding up-the waive method all wry-to shift: # by mere than one
character-when: a mismatch:occurs, but mever shift- it so far as to: missan oeowrenes of
£ in T -Shitting by more than one position saves comparisons smw itmigves- £ through
T more rc;padiv ?n addmma e shxfnng %)y Eargur amoant%, some piethods. v to reduce

Pzgtm i 1 gwm a flavor of these ideas, using P‘ = abxmmz and T = xabxyabxyabxz.
Note Lhat an muarremu of P heg,ms at Bnmfxon 6 of 7.7 ha;m:yg algorithm first aligns P

this cyale.twm:addmmml tfmcs unm tha, kzﬂ Lﬂd o% P i ahaned wﬂh Lh&f sti_i G.of T At
that point it finds-eight matches and concludes that # occurs in: ¥ starting at position 6.
to: this example, a total of 1 wmtv coifparisons are made by the naive algorithm.

A smarter algerithm might:. realize, after the ami‘h wmpm"xsﬁm that the next three

5

6 EXACT MATCHING

0 i 0 i 0 1
1234567890123 1234567830123 1234567890123
T wabstyabxyabxs T wabuyakyabnes T wabxyabxyabxz
P: abwyalatd ' P: abxyabisz Py abxyaluor
* Ed &
abuty i akmeyakbog abxyalry
A Amap e AN A K AR A
abxyabxz abxvabxz ahxyvalbg
abuyvabuz
k.
abwyabxe
&
abmyabxs

Figure 1.1: The first scenario #lusirates pure naive matching, and the next.two llustrate smarter shifts. A
caret beneath a character indicates a match and a star indicates a mismateh made by the algorithm,

comparisons of the naive algorithin will be mismatches. This smarter algorithm skips over
the next three shift/c compares, xmmedutciy moving s the left end of P to atign with position
6of T, thus saving three comparisons. How can a smarter algorithm do this? After the ninth
comparison, the gsigemthm knows that the first seven characters of P match characters 2
through 8 of 7', 1T it also knows that the first character of P (namely a) does not oceur again
in P until position S of P, it has enough information to conclude that character a does not
occur again in T until position 6 of T'. Hence it has enough information to conclude that
there can be no matches between £ and 7 until the left end of P is aligned with position 6
of T'. Reasoning of this sort is the key fo shifting by more than one character. In addition
to shifting by larger | ammmts we will see that certain aligned cimx acters do not need o be
compared.

An even smarter algorithm knows the next occutrence in £ of the first three characters
of P {namely abx) begin at position 5. Then since the first seven characters of P were
found to match characters 2 through 8 of 7, this smarter algorithm has enough informa-
tion to conclude that when the left end of P is aligned Wath ?m]tmn 6 of T, the next
three comparisons must be matches, This smarter algori athm avoids making those three
comparisons. Instead, after the left end of P is moved to atign with position 6 of 7, the

algorithm Lumpdres character 4 of P dgainst character 9 of 7. This smarter algorithm
therefore saves a total of six comnparisons over the naive algorithm.

The above example illustrates the kinds of tdeas that allow some comparisons o be
skipped, although it should: still be unclear how an algorithm can-efficiently implement
these ideas. Efficient implementations have been devised for a number of algorithmsg
such as the Knuth-Motris-Pratt algorithm, a real-time: éxtension of it, the Bover-Moore
algorithm, and the Apostolico—-Giancarlo version of 1. Al of these algorithims have been
implemented (o run in Hnear time (O + m) time). The details wil be discussed in the
next two chapters.

1.2. The preprocessing approach

Many-string matching and analysis algorithms are able to efficiently skip comparigons by
first spending “modest” time learning about the internal structure of either the pattern 7 or
thedext 7. During that fime, the other string miay not even be known to the algorithm. This
part of the overail-algorithim is calted the preprocessing stage. Preprocessing is followed
byt search stage, where the information found during the preprocessing stage is used to
reduce the work done while searching for occurrences of P in 7 ln the above example, the

1.3, FUNDAMENTAL PREPROCESSING QF THE PATTERN 7

smarter method was assumed to know that character.e did notocour again undil position 3,
and the even smarter method was assumed to know thatthe. pattern abxwas repcateci again
starting at posmﬂn 5. This assumed knowledge is obtained in the preprocessing stage..
For the eXact matching problem, all of the algorithms mentioned in'the previous sec-
fion preprocess pattern P. {The opposite approach of ‘preprocessing text 7 is used in
other algorithms, such as those based on suffix trees. Those methods will be explained
later in the book.) These preprocessing mcthmdb, as. cmgbmdi ieve}opui are similar in
spirit but often quite differemt in detail and wnct:ptudi diffic Ity in this book we take
a different apprmch and do not initially explain the mlbmally developed preprocessing
methods, Rither, we highlight the similarity of the preprocessing tasks needed for several
different muatching algorithms, by first defining a fundamental prepmcessn’zg of £ that
iy independéntof any’ particular matching algorithny, Ther 'we show how each specific
matching algorithm uses the information computed by the fundamental preprocessing of
P The resultis a simpler iiore-uniform exposition of the preprocéssing needed by several
dﬁmicat matchiﬁg n"mih()d%'and“& %imp}e Einear tite ‘dgﬂrithm For :e'xfu,t matching hmed

..._....

ﬂmtchmf{ Was de_vekaped in §”O2_] L

1.3, Fuidamental preprocessing of the pattern

Fundamental preprocessing will be deseribed for a general string denoted by 8. In specific
applications of fundamental preprocessing, § will often be the patiern.P, but here we use
S instead of P bumasc fun(idmunt&l prepmcensmg will also: be applied to steings other
than P C

The ﬁ}EE(xwmﬂ definition gives Lhe §\ey values wmpuied durmg the funddmenml pre-
processing of a string.

Définition Given a St’r'mg Sand a position i > 1, let Z;(S) be the !e*ng(h of the fongest
substrmv 01 S that smrts ak i and masch&s a prehx of 5.

in oiher wc}rds, 2 (S) is rhe Iength of ﬁae longest pr@ﬁx (}i S{i.. 1811 that magches a.preﬁx
of §. For example, when § = aabcaabxaaz then T .

Z5(8y = - 3 {aabe...aabx. .},
 Z6(8) = 1 (aa. ab...)Q |

Z9(5) = Zg(5) =

2‘9(5‘) = 2 {aab.. aa&)

When-Si m clear by context, we will use Z; in place of &, (S)K
il e'@the racxt Loncept comz{ler the bmes drawn e Figam 1 {’ ach box Qtart%

Figure 1.2: Each solid bex represents a substring of S that ;matche;s_ a prefix of § and that starts between
positions 2 and /. Each béx s called & 2 bex We use 1} 1o dénote the right-most end of any Z-bax that
begins ator o the {eft of positien iand o 10 dencte the substring:in the Z-box endirtg.at ;. Than f; denotes
the left end of &, The copy of o that occurs as a prefix of 8 is aiso shown in the figure.

8 EXACT MATCHING

substring of & that matches a prefix of § and that does not start at position one. Each such
box is called a Z-box. More formally, we have:

Definition For any position i » 1 where Z; is greater than zero, the Z-box at i is
defined as the interval starting at 7 and ending at position i -+ Z; — L

Definition ~Forevery i > 1, r; is the right-most endpoint of the Z-boxes that begin at
or before pos‘iii'n‘n'f Another way to state this is: ;35 the largest value of j + Z; — 1
overall 1 = J = {such that Z, > (. (Sec Figure 1.2.)

We uge the term l for the value of j specified in the above dehnnlon That is, /; is
the position. of the left end. of the Z-box that ends at 7, In-case there is more than one
Z-box.ending at r;, then!; can be chosen to be the Jeft end of any of those Z-boxes. As an
cx&mpic suppose. § == aahaabf,ax?abaabcy, then Zy =7, s &= 16, and fs = 10.

The linear time computation of Z values from § is the fundamental preprocessing task
that we will use in all the classical linear-timne matching algorithing that preprocess P.
But before detailing those uses, we show how to do the fundamental preprocessing in
linear time.

1.4, Fundamental preprocessing in linear time

The task of this section 15 10 show how to compute all-the Z, values for S in lnear time
(Le, in OGS S1%) Hme.
The method we will present was developed in [307] for a different purpose.

The preprocessing algorithm computes Z;, vy, and §; for each successive position 7,
starting from § == 2. Albthe Z values computed will be kept by the algorithm, but in any
iteration 1, the algorithm only needs the r; and /; values for j = j — 1. No earlier r or
{ vilues are needed. Hence the algorithm only uses a single variable, r, to refer to the
most recently computed v, value; similarly, it only uses a single variable /. Therefore,
in each iteration i, if the algorithm discovers a new Z-box (sfarting at i}, variable r will
be incremiented to the énd of that Z-box, which is the right- “most position of any Z-box
discovered so far.

To begin, thie algorithm finds 7, by expimﬂy comparing, eft to right, the characters of
ST2. 0151 and ST entil & mismatch 18 found. 25 is the 1ength of the matching siring,
HZy = O, thenr =y lssetto Zy + L and 7 == [y 08 set 1o 2. Otherwise » and [are set
to zero. Now assume inductively that the algorithm has correctly computed Z; for i up 1o
k-1 = 1, and asswme-that the algorithm knows the corrent r = e and [= 1., The
algorithm next computes 7y, r = rp, and [= 1.

The main idea is to use -t’hf_: already computed Z values 1o accglerate the computation of
Zy. In fact, tn some cases, Z, can be deduced from the previous Z values without doing
any additional character comparisons.. As a concrete example, suppose & = 121, all the
valugs 7, through Zion have already been computed, and ryn. = 130 and L5y = 100, That
means that there 15 a substring of length 31 starting at position 100 and matching a prefix
of § (of length 31). It follows that the substring oflength 10 starting at position 121 must
match the substring of length 10 starting at position 22 of S, and so Z» may be very
helpful in compiititig 712, As one case, i’ Zyy is thrée, say, then a little reasoming shows
that Z;5; must alse be three. Thuos in this tHostration, Zz; ¢an be deduced without any
additional character comparisons. This.case, alon g with the others, will be formalized and
proven correct below,

1.4, FUNDAMENTAL PREPROCESSING IN LINEAR TiME 9

[Ll T : :
3 L N . . :
8 ; 4 { i i S . o .cx‘ B
Kooz o B koor

PM'.!{-" . ki T -) . f S & .

k*i“/k"“[

Figure 1.4: Case 2a. ?he Icme;est smng starting at k' that maiches a prefix of. S is'shorter than |81, I this
case, Jy = Zk

F‘igure 1.5 Case 2 The langest strmg startmg at k" that ma%ches a prefix of &is at least |4,

l’he Z algm‘xt‘hm .

Given Z; for all1 < < k- fand 11% curtent vaium of r dﬂdl éﬁ and the update:d y dﬂd
f are cnmputeti as f(’}ff()W”‘i o

me
1. Ik »r, thcu ﬁnd / & l:)y L,x;;sizutly comparing Lhe characters startmg at posktion k io the
Lhdlél,wr‘y starting at position 1 of 8, until a mismatch is found. The length of the m;}tui
is Z,. IfZ, >0, thm setriok + Z; — Landset/ to k.

2. Wk <r, then pmm(}n kis u)ﬁtami,d in a Z-box, and hence S(A) is contained in substring
Si. r§ {caf ‘itee)such that £ 501 and.e matches a pmf;x of S Therefore, character Stk)
alqo appuus in pm:tzon ic = k - I + i uf S By ﬁ’lb s&me reasomng, .substrmg ,S[k r; (c 1‘,{

must ma[eh i ;): Chx m‘ S‘ Qfleng h: at ii,dst ﬂ‘le mmzmum of /A and lﬁf {v& TELE f5F ic —§— 1:}
See- Flgurz, 1.3 : : . e

\Nt c,onslcicx tWo suhcaxee based on 1§1L vilue of that mininusy i _
Fa. If Zkf < Bl then Z;< j,{ and r, { remain unahanwé (xm Fzgurc i 4}
Zh If /;;- !;‘ﬁ thﬂn iha umre sﬂhxﬁmg éik i l snuht'

};«nd - Cont

Theorem 1.4, 1. U sing Aa’gozm’?m Z, value 2 is correctly computed and vanables r and
{ are mrwcﬂ) ypdafed

PROOF InCase I, Zp isset cmrregtiy since it s wmputed by expla{,ﬁ commparisons, Also
{since & »-r mCase 1) before &y is computed; no Z-box has' been found that starts

10 EXACT MATCHING

between positions 2 and £ — 1 and that ends at or after position k. Therefore, when Z; > 0
in Case 1, the algorithm does find a new Z-box ending at or after &, and it i8 correct to
change r to k + Z; — 1. Hence the algorithm works correctly in Case 1.

In Case 2a, the substring beginning at position & can match a prefix of § only for
fength Z, < |41, 1f not, then the next character to the right, charactér k + 7., must maich
character 1 + Z,.. But character k 4+ 2, matches character k' - Zp (since Z;. < |8]), so
character k' 4 Zp must match character 1 + Z,.. However, that would. be a contradiction
to the deﬁmtton of Z,., for it would establish a substring longer than Z, that starts at &’
and matchesa prefix of S, Hence Z), = Z, inthis case, Further, k + 2, — 1 < r,s0r and
{ remain correctly unchanged.

" In Caseé 2b, § must be a prefix of § (as argued in the body of the algorithm) and since
any extension of this match 15 explicitly verified by comparing characters beyond r to
characters beyond the prefix f, the full extent of the match is correctly computed. Hence
Z; is correctly obtained in this case. Furthermore, since & -+ Z; — 1 > r, the algorithm
correctly changes r and . 1)

Corellary 14.1. Repeating Algorithim Z for each position { > 2 correctly yields all the
£; valoes.

Theorem 1.4.2. All the Z8) values are computed by the algorithm in OU8]) fime.

PROOF The time is proportional to the number of iterations, |51, plus the number of
character comparisons. Bach comparison results in either a match or a mismatch, so we
next bound the number of matches and mismatches that can oceur,

Each iteration that performs any character comparisons at all ends the first time it finds
a mismatch; hence there are at most 18] mismatches during the entire algorithm, To bound
the sumber of malches, nofe first that ;> ry_; for every iteration &, Now, let k¥ be an
iteration where g > (matches oceur. Then ry is set 10 ri..; + ¢ at least. Finally, ry < 151,
5o the total nuimber of ‘matches that occur during any execution of the ‘ngomhm is at
most (8. O

Ml

1.5. -T-he-simp!e‘;t linearstitne exact matching algorithm

Before d;scussmg the mmt, Lomp ex {classical) exact matchmg methods, we s}anw that
fundamental preprocessmg dl&)ﬁﬁ provides a simple Iinear-time exact matchinga algorithm.
This is the simplest linear-time matching algorithm we know of.

Let § = PST be the siring consisting of P followed by the symbol “$” followed by
T, where “$7 is a characﬁer'app&ming in neither £ nor 7. Recall that £ has length n and
T has length m, and i < . S0, § = P$7 has length n + m + 1 = O(m). Compute
ZiS) mx P from 2 ton L. + i Because “§" does not appear in P or T, Z; = n for
every Yo 1 Any value of i % # -+ 1 such thdi LSy = n identifies an occurrence of
P in T starting at p(}smon i —(n A1) of T. Conversely, if P oceurs in T starting at
position j of T, then Zinatye; Must e equal to n. Since all the Z,(8) values can be
compuied in O(n + m) = ((m) time, this approach identifies all the occurrences of P
in T in O{m) titne. _

The method can be implemented to use only (}n) space {in addition fo the space
needed for pattern and text) independent of the size of the alphabet. Sirce Z; < » for all
i, pusition:&’ (determined.in step 2} will always fall inside P, Therefore, there 18 no need
wo-record the 2 vatpes for characters in T, Instead, we only need to record the Z values

1.6. EXERCISES i1

for the n characters i P and also maintain the current [and r. Those values are sufficient
to compute (but not store) the 2 value of each character in 7' and hence to identify and
output any position | where Z; = n. :

There is another characteristic of this method worth intreducing here: The methoé is
considered an alphaber-independent linear-time method. That'is; we never had to assume
that the alphabet size was finite or that we knew the alphabet shead of time — a character
comparison only determines whether the two characters match ;mmmtch it needs no
further information about the alphabet. We will see that this characteristic is also true of the
Knuth-Morris-Pratt and Boyer-Moore algorithms, but.not of the Ahﬂwﬂm asick algorithm
or methods based on suffix trees.

1.5.1. Why continue?

Since function Z; can be computed for the pattern in linear time and can be used directly
to solve the exact matching problem in O(m) dme (with only 0(}‘2) addmondl spdee)
why continue? In what way are more complex meéthods’ (Knuth:
Moore, real-time ma *hmg, Apf)%mlmom(.ﬂanulrh} Aho—Cou 1
.} deservmg of atfe tmn‘? o

For the exact matchl g5 -”E}lem ‘the Knuth-Morris-Pratt aigorithm hiag only a marginal
d(ivatltagc over thu dsreu use of Z However it has histom,ai impurtance and 1 has been
é,ersumlucd in the Ahoforasmk &Eg(}mhm, to solve Ehe pmble' fnf sedrchmg, for a set
of patterns in a text in time hnedr in the size of the text, Th_‘_x_i_ roblem. s not mceiy solved
using Z‘ V‘,‘JUCS a}one Ti’ie reai -time extension of Knuth»Mc:r QPraii has ap advmtdg}e
in situations. wher; text is Jnput.on-line and one has o be. sute tthe. algorithny will be
ready for cach character as it arrives. The Boyer-Moore method is-valuable because (with
the. proper. 1mp§emmmtmn) italso runs in linear worst-case: time but typically runs in
sublinear 1ime, a{mmmmg only a fraction of:the characters of 7. Henee it is the preferred
method in most cases: The Apostolico~Giancarla method is valyable: because it has all
the cmtvamdgm of the Boyer-Moore method and vet.altows a relatively mmpie progf of
linear worst-=case running time; Methods based o suffix trees typically. preprocess the text
rather than the pattern andthen lead toalgorithms in which:the search iime 1 propoitional
tor the stz of the .pattem{rath:er'tli‘a’n‘the- size of the-text THis 18 &n extremely desitable
feature. Moreover, suffix. trées can be used fo solve much | mere complex problems than
exact matchmg, includin pu)blemq that are not wstly seived by chrect.‘-” pilCthQﬁ O‘f the

iundamuma] preprocasxmcf

wiﬁx trec method.s,

1 o. iuxurcmes

time and that aﬂ occurrences of P in T can be found m 'near

1. Usethe exmtence ofa Imearntime exact. m&tvhmg a?ganthm toisokg thee following problem
ins lingar el Given two'strings . and 4, determine:ifois @ Eirbular (oF cyolicy rotation-of g,
thatis; fw and Shave the samea length-and « consists of a'sufix of #-followed by a prefix
of 4. For example, defabeis a circular rotation @ef abcdet, This'is a classic pn}b e with &
very elegant solution.: : : S :

2. Similar to Exercise™t; gwe g 'inear-time algott ithm 1o determing whether a linear SHing o |
a substring.of & circular string £. A circular string of length nis a string in which charag;ter
rris considered to precede characier 1 (see Figure 1.6} Another way tothink about this

2

Exact Matcmng
Cia‘;%lcal Comparzsmx«ﬁas&d Methe}ds

2.1, Introduction

This chapter-develops a number of ¢lassical comparison-based matching algorithms for
the exact matching problem. With suitable extensions, all of these. atgorithms can be imple-
mented 10 run in linear worst-case titne, and all achieve this performance by preprocessing
pattera P . (Methods that preprocess. T will be considered inPart Hof the book) The orig-
inal preprocessing methods for these varions algorithms are related in spirkt but are quite
different-in conceptuat-difficulty. Some of the. original preprocessing methods are quite
difficuit.! This chapter does not follow the original preprocessing -methods but nstead
exploits fundamental préprocessing; developed in thie previoys chapmr ﬂ} implement the
needed preprovessing for-each spécific matching algorithm. - '

Also, incontragt to previous expositions, weeniphasi c‘thn Boym ~Maore inethod over
the Kruth-MorasPratt miethiod, since Bnyt,rw-Moore'l'_ the pr&cti{,ai wiethiod 0? choice
for LX:M,[wiatch g' Knuth-Mor rs-Prat is noﬂuhek,\s wmpleteiy dw(,!optd pdrﬁy for
historigal mamns but mmt y because it ﬂenuaizws to_ problems such as real-time string
smzu,hz;w and matching against a set of pmem& morg eastly than. BnynernUfe does,
These two topies will be described in this chapter and the next.

2.2. The Bﬁye%Mﬂare Aigﬁmhm

Asi in, {he nave alﬁ@nthm the Boyer-Moore: dig}mthfn.; shsstvely: diwm Powith T and
then ched\\s wheth v Pomatches the opposing char cters of 7. Further, after the check
v Shifted nght vedative 1o T just.as in the naive algorithm. However, the
contains thiee clever idegs not comained-ia the paive algorithm:
the right mwi nthe-bad chavacter shift rule, and the: good suffix shiftrale. Together,
these ideas tead to 4 method: that typically examines fewer than »r-£n chatacters {an
expected snbhnwmimc mt‘thofi) and that (with & certaivextensiony nins infnedr worse-
casetime. Ouedise e Boyer-Moore alsorithin, and exteny st concentrates
on provable aspects of #ybehavion Fxtensive experimentalund pt' suidies of Boyer—
Moore and sarianty Bnve been chuzmd i {2291, [237], (4004, 14101, and {425).

221, Righi-to-Ioft scan

For any alighment of P with 7 the Bﬁyer~—M00ze algorithin checks for an occurrence of
£ by scanning dzamcwr\ fromy right 1o left rather than ;‘mm left to right as in the naive

! Sedaewick (401] writes ‘Buiii the Kanth-Morris-Pratl apd the Boyer-Maoore algorithms require some complicated

' proprocessing on the patiern that is diffieult wo understand zod hay Hmited the oxent 1o which they are wsed”. in
agreemient with Sedgewick, [still do not understand the or iginal Boyer-Moore preprovessing rethod for the strong
good suflix rule.

16

2.2, THE BOYER-MOORE ALGORITHM | ¥

algorithm. For example, consider the alignment of P against T shown below:

1 2
1234R678901234567

T: wpbotbxabpax<tthpy

By tpabxab '

To check whether P ocowrs in T at this position, the Boyer-Moore algorithm starts at
the right end of P, first comparing T(9) with #(7). Finding a match, it then compares
T(8) with P{(6), etc., moving right to left until it finds a _ig‘l_isi*mi';;c_:h when compating T(5)
with P(3). At that point # is shifted right relative to T (the amount for the shift will be
discussed below) and the comparisons begin again at the rightend of P,

Clearly;if P is shifted right by one place aftereach mismaseh; o affer an oecyrrence
of P is found, then the worst-tase running time of this approdch is O} just as io the
naive alzorithm. So6 at this point it-isn’t clear why comparitig characters from right to Jeft
is any better than checking from left to right. However, ith two additional ideas (the bad
character and the good sufficrales), shi fis of move than one’ position éften occur, and in
tvpical situations large shifts-are common, We weit examine these two ideas. '

h 2.2.2. Bad character rule

To get the idea of the bad character rule, suppose that the ta st {right-most) character of F
is v and the character in T it aligns withiisx # y. Wlt:ﬂ this initial zmsm;ﬂc,h oceurs, if we
know the right-most puxitmn in £ of character x, we can x&fﬂy shift P to the right so that
the right-most x in Pg below the mismatched x in T. Any _shq_m,s shift would only result
in an fmmediate mismatchi. Thus, the longer shift is correct (i.e., it will pot shift past any
oecnrrence of P in T'). Further, if x never occurs in P, then weé can shift P compleiely past
the point of mismatchin F. In these cases, some characters.of T witl never be examined
and the amtbnd wi ldcmally run i sﬁbimmr tum This e‘}bsermtmn lsiormaived i:reiow

- Definition Foreach c,imrac_sa,r X inthe diphdbt,t lu Rix)be the position of right-most
oecurrence of character x-in F. B(x) is defined o be zero it x does not occur in P,

It is casy to pr upmwxs P in O{n) time to collect the R(x} values, and we leave that
as an exercise. Note that this preprocessing does pot require the fundamental preproces-
sing discussed in C‘hdpwr 1 (that will be needed for the more complex th rule, the good
snfhx rule),

We use the R values in the following way, call ed the bad dmmc tc? shzfz Fitle:

Suppose for a particular alignment of P against T, the right-ihostr — i characters of
P match their courtterparts in 1, hut the next character fo theleft, PO, muismatches
with its counterpart, say i position k of T The bad character Figle say$s that P should
be shii*‘téd right by max {1,/ e R(TU)] places, That is, if'the .?l*ight‘wrt_mst Deourrence
in P of character T¢k) is in position j < i (including the possibility that j = (),
then shift 7 so that character j of P is below character k of 7. Otherwise, shift P
by one position.

The p(’)iﬁ{ c>f thiq shift rule is to shift P by more than one character whep possible, In the

twe p()bm.(ms,.}&fta;z i-.%xc: .shi{‘?t, the comparison of Pand T beginsagainas the rightend of P,

18 EXACT MATCHINGCLASSICAL COMPARISON-BASED METHODS

Extended bad character rule
The bad character rule is a useful heuristic for mismatches near the right end of P, but it has
no effect if the mismatching character from T occwrs in P to the right of the mismatch point.
This may be common when the alphabet is small and the text contains many similar, but
not exact, substrings. That situation 1s typical of DNA, which has an alphabet of size four,
and even protein, which has an alphabet of size twenty, often contains different regions of
bigh simitarity. o such cases, the following extended bad character rule 1s more robust:

When & mismatch océurs al position § of £ and the mismatched Lhamuu in7isx,
then shift P to the :‘wht so that the closest x to the left of position ¢ in P s below
the mismatched x in 7

Because the extended: rule gives larger shifts, the only reason to-prefer the siropler rule
is to avoid the added implementation expense of the extended rule. The simpler rule uses
only O(1E]) space (L is the alphubet) forarray R, and one table lookup for each mismaich.
As wewill see, the extended rule can be implemented to take only O(n) space and at most
ohe-extra siep percharacter comparison. That amount of added space is not often a critical
issue, but it is an empirical question whether the longcz shifts make up for the added time
used by the extended rule. The original Boyer-Moore algorithin only uses the simpler bad
character rule,

}mpiememing the extended bad character rule

We preprocess P su Lhat the axtcndod bad character rule canbe unpiunmtcd effic tently in
both thne and space. The preprocessing should discover, for each position § in and for
each character x in the alphabet, the position of the closest occurrence of x in £ to the left
of i. The obvious approach is to use a tweo-dimensional array of size n by 1 L1 to store this
information. Then, wht’:n'zi mismaich occurs at position § of P and the mismatching char-
acterin 1 s x, we lunk up the (7, x) entry in the array. The lookup is fast, but the size of the
array, and thu{me o build it, may be excessive. A better compromise, below, s possible.

During preprocessing, scan P from right to left co Em,tmgj, for each character x in the
alphabet, a list of the-positions where x vceurs in £. Since the %éan is right to lefi, each
tist will be m decreasing ovder. For example, if P == abacbabe then the fist for character
e 18 6, 3, 1. These list accumulated 1870 (n) time and of course take onty O(n) space.
During the search stuge of the Boyer-Moore afgorithm if there is a mismatch at position
i of P and dig 'm%sx'ﬁa{chéﬁg C_i‘i’iiracter i 715 x, scan x's bist Trom the top until we reach
the first number less thatt { of discover there is none. If there is none then there is no
oeeurrence of x before §, and all of P 15 shifted past the x in 7', Otherwise, the found entry
gives the desired position of x.

After a mismatch at position i of P the time to scan the Hist is at most # — {, which
is roughly the number of characters that matched. So in worst case, this approach at
most doubles the ranning time of the Boyer-Moore algorithm. However, in mos problem
settings the added.time will be vastly less than double. One could also do binary search
on the list in circumstances that warrant i,

2.2.3. The (strong) good suffix rule

The bad-character tale by itsell is reputed to be highly effective in practice, particularly
for Haglish text {229], but proves less effective for small atphabets and it does not lead
to a liear worst-case running time. For that, we introduce another rufe called the strong

- 2.2, THE BOYER-MOORE ALGORITHM 12

T o : L]

P before shift

Foafier shift

Figure 2.1: Goad suffix shift rule, where character x of T mismaiches with character ¥ of P, Chatactars
yand z of Pare guaranteed i be distinct by the good sufix rule, so z has a chance of matching x.

good suffix rule. The original preprocessing method [278] for the strong good suffix
rule is generally considered quité difficult and soméwhat mystérioﬂs (_ai@iﬂldugh a weaker
version of it is easyto understand). In fact, the preprocessing forthe strong rule was given
incorrectly i [278] and corrected, without much explanation, in {384 Code based on
[3841is given without real explanation in the text by Baase [32], but there are no published
sources that try to fully explain the method.” Pascal code for strong preprocessing, based
o1 an eutéme by Richard Cole | EO'?‘i is shown in Exercise 24 at the-end of this ¢ hapter.
In contrast, the fundamental preprocessing. of £ discussed in Chapter 1 makes the
needed plnpmwwng, very simple. That is the approach we take here. The strong good
suffix rule is:

ErE

" Suppose for a given alignment of 2 and T, a substring 7 of 7 matches a suffix of P,
but a mismatch occurs at the next comparison to the left. Then find, if it exists, the
right-most copy #"of £'in # such that #' is not a suffix of P and the character to the

Aeft of ¢ in P differs from the character to the left of t in P. Shift P to the right so
that substring " in # is below substring 7 in 7 {see Figure 2.1). If ¢* dogs not exist,
then shift the left end of 7 past the left end of 1 in T by the least amount 50 that a
prefix of the shifted pattern matches a suffix of 1 in ¥ If no suchoshift is possible,
then shift /" by n phaces to the right. i an occurrence of P is found, then shift P
by the least amount so that a proper prefix of the shifted P matches a suffix of the
oceurrence of P in T I r}_o_such shift is possible, then shift P by n places, that s,
shift P pastzin 7. ' '

For a specific example consider the alignment of # and. T given below:
o 1
123456789012345678
T: prastabstubabvgrrst
#
P goabdabdahb
12345678%0

When thé mismafeli vecurs at position 8 of P and position 100l T, 1 = ab and ¢/
ocours tn P startiiig at position 3. Hence P is shsftsd right by six pldum resubling i in the
tollowing aiagnmum

1 A recent ploa appesred on the inernet sewsgroup comp. theery:

Fam looking for an efegant Gepsity understandable) proof of comeciness for & punt of the Bover-bMoore sineg maiching
the deby {good-sutfit) tabte, T didn't find much of sn

algorithyn. The difficuli-o-prove part bers is the dlgerithm fias computes

wiferstandable proof yet, so Do minch apprecise any help!

28 EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODRS

0 1

1234%6789012345678
T: prstabstubabvgxrst
i grabdabdab

Note that the extendéed bad character rule would have shifted P by onlv one place in
this example.

Theorem 2.2.1. The use of the good suffix rule never shifts P past an occurvence in T

PROOY Suppose the right end of P is aligned with chaiacter & of 7 before the shift, and
suppose that the good suffix rude shifts P so its right end aligns with character & > .
Anyocomrence of P ending at a position { sirictly between & and & would immediately
violaie the selection rule for &7, since It would imply either that a closer copy of occurs
in P or that a longer prefix.of P matches a suffix of 1. DO

The original published Boyer-Moore algorithm [75] uses a simpler, weaket, version of
the good suffix rule. That version just requires that the shifted P agree with the ¢ and does
not specily that the next characters to the left of those oceurrences of 1 be different. An
explicit statement of the weéaker rule can be obtained by deleting the itatics phrase in the
first paragraph of the statement of the strong good suffix rufe. In the previous example, the
weaker shift rale shifts £ by three places rather than six, When we need to distinguish the
two rules, we will call the simpler rule the weak good suffix rale and the rule stated above
the strong good suffix rule. Por the purpose of proving that the sgarch part of BderAM{}ore
rins in hinear worst-case time, the weak ritle is not sufficient, and in this book the strong
version is assumed unless stated otherwise,

2.2.4. Preprocessing for the good sulfix rule

We now formalize the preprocessing needed for the Boyer—-Moore algorithm.

Definition Por each £, L{7) is the largest position less thatt 0 Stch that string Plion]
matches a suffix of PLU LY. LD s defined to be zero if there 18 no position satisfying
the conditions, For each 7, 17(73 is thie Targost posttion less than n such that string PJi..7]
maiches a sufficof PLL.LG)] and such that the character preceding that suffix is not
equal to P(i 1) L'(f)yis defined to be vero i there is 0o position satisfying the conditions.

For example, if P == cabdabdab, then L(8) = 6 and L'(8) = 3.

L{i) gives the right end-position of the right-most copy of P[i.n} that is not & sutfix of
FP,whereas L'(#) gives the right end-position of the right-most copy of PIi.a| that is not
a suffix of P, with the stronger, added condition that its preceding character is unequal
to Pl o= 1) So, in the strong-shift version of the Boyer—-Moore algorithm, if character
i — Lof P ismvolved in a mismatch and L'(i) > 0, then £ is shified night by n — L{J)
posittons. The result is that if the right end of P was aligned with position & of 7 before
the shift, then position L'(} is now aligned with position £.

During the preprocessing stage of the Boyer—Moore algorithm L7(7) {and L(7), if de-
sired) will be compuded for each position / tn P, This is donein O(n) time viathe following
definttion and theorem.

Defipition For string P, N;(FP) i3 the length of the Jongest suffix of the substring
FIL 71 that s also a suffiv of the foll siring P.

2.2, THE BOYER-MOORE ALGORITHM 21

Ferexample, P = cabdabdab, then Nal#) = 2 and Ngl P} == 5.

. Recall. that Z;(5) is the length of the longest substring of § that starts at 7 and maiches
A prel ‘x of §. Clearly, N is :he reverse of 72, that is, if P7 dmmm the string obtained by
_ rwusm&, Pothen Nj(P) = Z,. .., (P"). Hence the N AP Y vad ues can be obtained in O(n)
titne by using Alg(m{hm Zon P The fioilowmgthwmm_ is then immediate.

'f”;!:‘héo'mm 2.2.2. LG is the largest index § less thann such that N APy =Pl which
iEne=i4-b) L'(iYis the largestindex j less thann suchthat Ny(P) = | Pli.nl| = (n—i+1).
i Ciiven Theorem 2.2.2_ it follows immediately that all the £/(7) va}ueﬁ.c:zm be accumulated
in1 linear time from the N values using the following algorithny:
' 'Z'—h_aseci Boyer-Moore
fori = ltondo L'G) = 0
forj = 1ton ~ | do

_b&gm.

i a - NP+ 1

L'y = .
end;

e,
- The L{) values (xi: desm,ci} can be obtained by adding the foll (}wmg:, lines 1o the above
pseudocode:

L(2) = L(2);
for i =3t n do L{i) = max{L{i — 1), L'(D}];

Theorem 2.2.3, The above method correctly computes the I, values. -

PROOF L(7) marks the right end-position of the right-most substring of P that matches
Pli.ntandisnotasuflix of PI1..«n]. Therefore, that substring begings at pesition L({ V-n-47,
which'we will denote by j. We will prove that £(/) = max[L{i'— 1}, L'(i)] by considering
what character j — 1 ts. First, it j = | then character j - | doesn't exist, so LG~ 1y = 0
and L7 == 1. So suppose that 7 » 1. I character j — 1equals character 1 — 1 then
L(i) = L{i -). icharacter / — 1 does not equal character 7 — 1 then L(i) = L'(7). Thus,
in all cases, L(i)y must either be L) or L{{ —).

However, L(i) must certainly be greater than or equal to both £ (z} and L{i — 1). In
summary, L{{) must either be L'{iyor L{ — 1), and vet it must be greater or equal to both
of them;, hence L(/ must be the maximum of L{iyand L — 1), O

Yinal preprocessing detail
The preprocessing stage must also prepare for the case when L'(/} = O or when un
occurrence.of F* is found. The following definition and thegrem-accomplish that,

Definition Let ['(ydenoie the len ath of the }argégl; sutfix of Pli.n] thitis also 2 prefix
of P, if one exists. If none exists, then let I'(7) be zero,

i‘izmrun 2.2.4. RA e’quals zhe Iargmt i :_g' 1P nll, which is i i 4, sueh that
N, AP) =], ' ' S

We leave the proof, as well as the problem of how to accumulate: the 1'(7) values. in
lineartime, as a simple exercise. (Exercise 9 of this chapter)

22 EXACT MATCHING CLASSICAL COMPARISOMNBASED METHODS

2.2.5. The good suffix rule in the search stage of Boyer—-Moore

Having computed L'(iyand I'(;} for each position i in P, these preprocessed values are
used during the ssarch stage of the algorithm to achieve lar: ger shifts. If, during the search
stage, @ mistnatch oceurs at position i — 1 of P and L'(7/) > 0, then the good suffix rule
shifts P by n'- L'(i) places 1o the right, so that the 1/(i)-length prefix of the shifted P
aligns with the L'(i»-length suffix of the unshifted P. In the case that L’ () = 0, the good
suffix rule shifts P by n - {'(iy places. When an occurrence of P is found, then the rule
shifts P by n — I'(2) places. Note that the rules work correctly even when I'(i) == (.

One special case vemains, When the first comparison is o mismatch (i.e., Pin) mis-
matches) then P should be shifted one place o the right.

2.2.6. The complete Boyer—Moore algorithm

We have argued that neither the good suffix rule nor the bad character rule shift P so far as
to miss any occurrence of P, So the Boyer-Moore algorithm shifts by the largest amount
given by either of the rules. We can now present the complete algorithm.

The Bover-Maoore algorithm
{Preprocessing stage)
Given the pattern P,
Compute L'(i) and (7)) for each position { of P,
and compute R{x} for each character x ¢ 5.
{Search stage}

f oo
while k < m do
bewin
Iz
B o ko
while § > Oand P(1) = T{hdo i
begin
T S e
e S
end;
if { = Othen
begin
1‘epurt an occurrenve of P in T ending at position k.
ks kb on - (2);
end
else
shift P (increuase &y by the maximum amount determined by the
(extended) bad character rule and the good suffix rale.
end;

Note that although we have always talked about “shifting P, and given rules to deter-
mine by how much £ should be “shifted”, there is no shifting in the actual implementation.
Rather, the index k is increased to the point where the right end of P would be “shifted”.
Hence; each act of ¢hifting P-lakes constant time.

We will later show, in Section 3.2, that by using the strong good suffix rule alone, the

L3, THE KNUTH-MORRIS-PRATT ALGORITHM 23

Boyer-Moore method has a worst-case running time of ((m) provided that the pattern
does not appear in the text. This was first proved by Knuth, Motris, and Prate {278)], and an
alternate proof was given by Guibas and Odlyzko [196]. Both of these prmis were (uite
difficult and Qsi&hihh&ﬂ worst-case time bounds no better mn S wmpausans Later,
Richard Cole gave a much snmplef proof {108} esmbhshmg, a bozmd of 4 comparisons
and also gave a difficult proof establishing o tight bound of ?m u}mpdrzsom We will
present Cole’s proof of 4m comparisons in Section 3.2, .

When the pattern does appear in the text then the ort gmai Boym --MMoorp method runs in
B(nm) worst-case ome, However, several simple modifications 1o the method correct this
problem, yielding an O¢m) time bound in all cases. The first-of these meodilications was
dueto Galil | 1687 After discussing Cole’s proof, in Section 3.2, for the case that P doesn’t
oceur in T, we use a variant of Gali’s idea to achieve the linear time bound in all cases.

At the other extreme, if we only use the bad character shift rule, then the worst-case
running time is O(nm), but assuming randomly generated strings, the, expected mnning
time is sublinear, Moreover, in typical string matching apphcati.gﬁs mvolving natural
language texi, a sublingar running time is almost always ob:éer;,v@d in practice. We won'
discuss random string analysis in.this book but referthereaderto 1184

Although Cole’s proof for the linear worst case is vastly simpler than sarlier proofs,
and is important in order to wmp lete the full story of Boyer-Moore, it is not trivial.
However, a fairly simple extension.of the Boyer-Moore afgerithm, due to Apostolico and
Crancarfo [26], gives a “Boyer-Moore-tike” algovithm that allows a faidy direct proof of
a2m worst-case bound on the numbet of comparisons, The Apostoliga-Giancarlo variant
of Boyer-Moore is discussed in-Section 3.1, :

2.3 The-KnutlyM(}rris«Pratt algorithm

The best known linear-time aiwrxt%sm for the exact mdi@hmgz problem is due to Knuth,

‘Morms, and Pratt [”’78§ ith{)ugi} it 1s rarely the method of choice, and is often much
mferior in pz actice fo. ‘the Boyer-Moore method {and others), it can be simply explained,
‘and jts linear time bound is (Fairly) easily proved. The algorithm alsé forms the basis of
the well-known Aho-Caorasick, aigorﬁhn’a which efficiently finds all occurrences in' a text
of any. pattern froma sefof patterns.’ : '

2.3.1. T_hf_é Knu-th-M@rrié-i?gait shif!i idea

Fora givenalignment of P with 7', suppose the naive algorithm. maiches the first { Charac-
ers.of P againsttheir counterparts in 7 and then mismatenes on the pext comparison: The
-naive algorithm would shift P by just one place and begin c()snparing againfronthe deft
-end of P Buta larger shiff may often be possible. Forexmmple, 3 P = abexabeode and, In
" the present alignment of Powith T, the mismatch occurs inposition 8 of P, thenitis easily
deduced (and-we will-prove below) that P can-be shifted by four places without passing
f(-’-)y@r any cccurrences of £ in T, Notice that this.can be dedirced without even knowing
~what steing 7 s orexactly how P is aligned with 7. Only the location of the mismatch in
. P must be known. The Knuth-Morris-Pratt algorithm is based on-this kind of reasoning
to make larger shifts than the naive algorithin makes. We now tormalize this idea:

L We m}] present several solutions to that set problem including the Ahe-Corasick method it Section 3.4, For those
© yedsons, and: for jts historical role i the field, we fully developithe Knuth-Momrig-Pratt method herg,

24 EXACT MATCHING.CLASSICAL COMPARISON-BASEDR METHODS

Definition Foreachposition 7 inpatiern P, define sp (P} 1o be the length of the longest
proper syffix of P{1..i] that matches a prefix of P,

Stated differently, sp;(P) is the length of the longest proper substring of P{1..i] that
ends at i and that matches d prefix of P, When the string is cléar by context we will use
sp; in place of the full notation.

For example; if P = abcaeabcabd, then spy = $py = 0,spy = 1, spy = 3, and
$pio == 2. Note that by definition, spy = 0 for any string,

An optimized version of the Knuth-Morris-Pratt algorithin uses the Tollowing values.

- Drefinition For each position { in pattern £, define spi{P) 1o be the length of the
lotigest proper suffix of 21 1..1] that matches a prefix of P, with the added condition thai
characters P+ 1) and Plsp! 4 1) are unequal.

Clearly, spi(P) = spi(#) for-all positions i and any string P. As an example, if
P = bbecaebbeabd, then spy == 2 because string bb oceurs both as a proper prefix of
P11..81 and as a suffix of P{1..8], However, both copies of the string are followed by the
same character ¢, and so sp; < 2.In fact, spg = 1 since the single character b occurs as
both the first and fast character of P{1..8] and is followed by character b in position 2 and
by character ¢ i position 9. '

- The Knuth-Morris-Pratt shift rule
We will describe the algorithm in terms of the sp” values, and leave it 10 the reader to
modify the algosithm if only the weaker sp values are used.* The Kauth-Morris-Pratt
algorithm aligns P with 7" and then compares the aligned characters from lefi o right, as
the natve algorithin does.

For any alignment of P and T, if the first mismatch (comparing from left to right)
occurs in position § - 1 of P and position® of 7', then shift P to the right (relative
10 7)) so that P{1..sp] aligns with Tk — spl..k — 1], In other words, shift P exactly
{4 1 (sp]++ 1) == § — sp! places to the right, so that character sp; + 1 of P will
align with chasa‘c_:tef k of T. In the case that an occurrencepk"has bc{tn found {no
mismatch), shift P by r — sp. places. :

The shift rule guarantees that the prefiX P{1..sp]] of the shifted P matches its opposing
substring in 7. The next comparison is then made between characters 7{k) and Psp; -+ 11
The use of the stronger shift rule based on sp; guarantees that the same mismatch wiit not
ocetir again in the new alignment, but it does not guarantee that T(k) = P{sp! + 1],

In the above example, where P = abcxabede and sp; = 3, if character 8 of P

7 or how P is positioned with 7.

The advantage of the shift rule is twofold. First, it often shifts P by more than just a
single character. Second, after a-shift, the leftemost sp! characters of P are guaranteed to
match their connterparts in 7. Thus, to determine whether the newly shifted £ matches
its counterpart in I, the algorithm can siart comparing P and T at position sp; + |
of £ (and position & of 7). For example, suppose P = abcxabede as above, T =
xvabexabexadedg feg, and the left end of P is aligned with character 3 of 7. Then F
and T will mateh Tor 7 characters but mismatch on character 8 of P, and £ will be shifted

3 Theyeader should be alerted that traditionally the Knuth-Morsis-Pran atgorithm hias been described in terms of
Fatture functions, which are related 1o the sp; values. Fatlure fanctions will be explicitly defined in Section 2.3.3.

2.3, THE KNUTH-MORRIS-PRATT ALGORITHM 25

I3 B k-t

P before shift

P after shift

= “‘raissed ocewrrence of P

Figure 2.2: Assumed missed occurrence used in corvectnass proof for Knuth-Morris-Prat,

by 4 places as shown below:

1 2
1Z2R456TE901 23456878
wyaboxaboxadodglfeg
abcoxabode
aboxabode

As guaranieed, the first 3 characters of the shifted P match their counterparts in 7" (and
their counterparts in the unshifted P).
Summarizing, we have

Theorem 2.3.1. After o mismatch at position i + 1 of P and a shiftof | — sp] places 1o the
right, the lefl-most spicharacters of P are guaranteed to match their counterparts in T

Theorem 2.3.1 partially establishes the correctness of the Knuth-Morris-Pratt algorithm,
but to fully prave correctness we have to show that-the shift rule never shifts too far. That
is, using the shift rule no occurrence of P will ever be overlooked,

Theorem 2.3.2. For any aligmment of P with T, if characters 1 through i of P maich the
apposing characters of T but chdracter { + 1 mismatches T(R), then P can be shifted by
i — sp; places to the right without passing any occurrence of P in T

PROOF Suppose not, so that there is an occurrence of P starting strictly to the left of
the shifted £ (see Figure 2.2), and let & and § be the substrings shown in the figure. In
particular, f is the prefix of # of length sp}, shown relative to the shifted position of #.
The unshifted # matches 7 up through position [of P and position b — 1 of T, and afl
characters in the (assumed) missed occurrence of P match their counterparts in 7. Both of
these matched regions contain the substrings o and B, so the unshified P and the assumed
accurrence of P match on the entire substring «ff. Hence «f is a suffix of P[1..i] that
matches a proper prefix of P. Now let [= |aff] ++ 1 so that position ! in the “missed
occurrence” of P is opposite position k in 7. Character P(1) cannot be equal to P(i + 1)
since P(4) is assumed to match T{k) and P(i -+ 1) does not match 7(k). Thus of is a
proper suffix of P[1../] that matches a prefix of P, and the next character is unequal to
P{i+ 1). But joe| > 0 due to the assumption that an occurrence of P starts strictly before
the shifted P, so lapl = |Bl = sp/, contradicting the definition of sp;. Hence the theorem
is proved. O

Theorem 2.3.2 says that the Kouth-Morris-Pratt shift rule does not miss any occurrence
of P in T, and so.the Knuth-Morris-Pratt algotithm will correctly find all occurrences of
Pin T, The time analysis is equally simple.

26 EXACT MATCHING:.CLASSICAL COMPARISON-BASED METHODS

Theorem 2.3.3. Inthe Knuth-Morris-Pratt method, the fmmber afc hctmct()}’ COMPAriSOns
is atmost 2m.

PROOYF Divide the algorithm into compare /shift phases,; where a single phase consists of
the comparisons done between successive shifts, After any shift, the comparisons in the
phase go left toright and start either with the last character of 7' compared in the previous
phase or with the character to its right, Since P is never shiifted left, in any phise at most
one comparison involves a character of T that was previously compared. Thus, the total
number of character comparisons 18 bounded by m + 5, where s is the mumber of shifts
done in the algorithm. Buts < m since after m shifts the right end of P is certain} y {o the
right of the right end of T, so the number of comparisons done is bounded by 2m. O

2.3.2, Preprocessing for Knuth-Morris-Pratt

The key to the speed up of the Kauth-Morris-Pratt algorithm over the naive algorithm is
the use of sp’ (or sp) values. Tt is easy to see how to compute all the sp” and sp values from
the 7 values oblained during the fundamental preprocessing of P, We verify this below.

Definition - Position f 2> | mapsio i it i = j 4 Z £y 1. Thatis, j maps tod i/ is
the right end of a Z-box starting at j.

Theorem 2.3.4. Foranyi = 1, spi(P)y = 2Z; =i~ j+ |, where j > 1 is the smalles
pesition that maps to o3 there (s no such j f!:'en spiPy =0 Foranyi » 1, spi{ P} =
i = j+ 1, where §is the smallest position in the range | < j < i that maps to i or beyond.
If there is no such j, then sp{P) = 0.

PROOF If spi(F) is greater than zero, then there is @ proper suffix « of P{1..i] that
matches a prefix of P, such that P[i -+ 1] does not match P[le] 4+ 1], Therefore, letting |
denote the start of o, Z; = jor| = sp(P} and j maps to i. Hence, 1f there 1 is no Jin the
range 1 < j < i that maps to 4, then spi{ #) must be zero,

Now suppose s P (P) = { and let j be as defined above. We elasin that j is ﬁau;, smallest
position in the range 2 to i that maps to . Suppose not, anddet j* be a position in the range
P j*< jothat ma'p~‘~;~‘toi “Fhen PEjtilweuld be a proper suffix of P{1..7 }thar matches
a prefix (call it B)of P Maoreover; by the definition of mapping, P(i + 1) # P(IB]), so
spi(PYy = | Bl > Jof, contradicting the assumption that sp! = .

The proofs of the claims for sp;(P) aré similar and are left as exercises,” 0

Given Theorem 2.3.4, all the sp” and sp values can be computed in linear time using
the 2; values as fellows:

Z-based Knut'huMurris-Pratt

forf{ := 1 tondo

sploes O
for j 1= n dewnto 2 do
begin
Lom oo LA P)
spp = L

e

The sp values are obtained by adding the following:

24, REAL-TIME STRING MATCHING 27

sput Py = spl(PY;
fori i==n — | downto 2do
Cspil Py == maxisp (P = 1 spi(Pyl

2.33. A tull implementation of Knuth-Merris-Prait

We have described the Knuth-Mortis-Pratt algorithm m terms of shiftiag P, but we nevér
accounted for time needed to implement shifts. The reason is that shiftingisonly conceptual
and P is never explicitly shifted. Rather, as in the case of Boyér-Mgoere, pointers to P
apd T are incremented. We use pointer p to point into P dﬁd ong }wm&r({for “current”
character) to pomt into T, -

I}eﬁmtmn For mtgzn posttmn i fromiton -+ 1, dnfsm the mllum lumtmn F’{z} o be
o] (ami defmf: F (r.) = 8Py -+ 1), where spﬁ and spy earc ddlmd 1o be 2ET0.

We will only use the (stmnger) failure function (i in this d-m{;u:«;s;gm butwill r.ef_c‘:r to
AL Jater. - S :

After anismatch in-position 7 -+1 > 1 of P, the Knmh Mums Pratt dlg,omhm ‘shifts”
50 that the next cmnpmson is between the (,hz%lcit,f;cl' in position ¢'of T and the character
i positonsp+1of P, Ry :%{)!%1 e F{7 4+ 1), soea general “shift” can be implemented in
constant time by fust sétting pto F/(7 + 1). TWQ spectal cases remain, When the mismatch
‘bicurs in position 1 of P, then pis setto F'(D) = 1 and-¢ is incrémented by one. When an
occurrence of £ is-found; then £ is shifted rwh{ by n - spf places: This is implemented
by setting F'(n -+ Deto spl 1.

- Putting all the pieces together gives the full Knuth-Morris-Pratt algorithm.

Knuth-Morm Pratt algorithm

begin
Preprocess ' to find: F'(k) = sp;_ | + Flork fromt o -+ 1.

While ¢+ (n — p) < m
do begm
‘While P(p} s T{c} and p <
do begin
pi=p+L
Cim o+ 1
end; _
if.p =n+ 1then
report an occurrence of P ostarting at position ¢ —n of 7.
Hpi=Ilthenc i =c-+1
== Fl p)
end;

2. 4, Real-tlme strmg matchmg

in the search stdge of the Kputh- MQH is-Pratt algorithm, 2 is ahvmd against a substring of
T and the two strings are compared left (o right until either all of P is exhausted {in which

28 EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODS

case anoccurrence of P in 7" has been found} or until & mismatch occurs at some positions
i-+1of Pandkof 7. In the fatter case, if sp] = 0, then P is shifted right by i —sp/ positions,
guaranteeing that the prefix Pi1..sp] of the shifted pattern matches its opposing substring
in T'. No explicit comparison of those substrings is needed, and the next comparison is
between characters 7(k) and P(sp] -+ 1). Although the shift based on sp] guarantees that
P 1) diffess'from "P(Spj 1), it does not guarantees that 7'(k) = Plspl - 1), Hence
T(k) might be compared several times (perhaps £2(1 P]) times) with' differing characters
in P Forthat reason, the Knuth-Morris-Pratt method 1s not a real-time method,

To be real time, a method maust do at most a constant amount of work - between the
time it first examines any position in 7" and the time it Jast examines that position, In the
Knuth-Morris-Pratt method, if a position of 7 is involved in a match, it ks never examined
again (this Is easy to verify) but, as indicated above, this is not true when the position is
involved in a mismatch. Note that the definition of real time only concerns the search stage
of the algorithm, Preprocessing of £ need not be real time. Note also thas if the search
stageds real thime it certainly is also linear time.

The utility of areal-time matcher s two fold, First, in certain apphwtmns such as when
the characters of the text are being sént to a small memory machine, one might need to
guarantee that each character can be fully processed before the next one is due to arrive,
If the processing time for each character is constant, independent of the length of the
string, then such a-guarantee may be possible. Sevond, fn thiy particular real-time matcher,
the shifts of £ may bedonger but never shorter than in the original Knuth-Morris-Pragt
algorithm. Hence, the real-time matcher may run faster in-certainproblem instances.

Admittedly, arguments in favor of real-time matching algorithms over lnear-time meth-
ods are somewhat tortured, and the real-time matching is more a theoretical issue than a
practicat one. Still, itseems worthwhile to spend a little time discussing real-time matching,

2.4.1. Converting Knuth-Morris-Pratt to a real-time method

We will use the 7 values obtained during fandamental preprocessing of P to convert
the Knuth-Morris-Pratt method into a real-time method.. The required preprocessing of
P is guite similar to the pmprocmsrrw done in Section 2.3.2 for the Knuth-Morris-Pratr

algorithm. For hastorical reasons, the resultmé real-time method is generally referred to
as a deterministic finite-state string matcher and is ofien represented with a finite state
machine diagram. We will not use this terminology here and instead represent the method
in pseudo code.

Pefinition Let x denote a charactér of the alphabet, For each position 1 in pattern P,
define s;.s(’i‘“(P} to be the length of the longest proper suffix of P[1..i] that matches a
prefix of P, with the added condition thar chardcter Pspl -+ 1yis x.

Kaowing the sp, ., values for each character x in the alphabet allows a shift rule
that converts the Knuth-Morris-Pratt method into a real-time aigorithm. Suppose P is
compared against a substring of T and a mi«;match occurs at characters 7'(k) = x and
P{i-+1). Then P should be shifted sight by { —spy, ., places. This shift guarantees that the
prefix Pl sp| . I matches the opposing suh,\zrmg in T and that 7{k) matches the next
character in P. Hence, the comparison between T'(k) and P(spj, , + 1) can be skipped.
The next peeded comparison is between charactérs P{wgi‘ o+ 2y and T+ 1y With this

2.5. EXERCISES 28

shift rule, the method becomes real time because it still never réexamines a position'in T
involved in a match (a feature inhérited from the Knuth-Morris-Praft algorithm), and it
now also never reexamines a position involved in a misinatch. So; thie search stage of this
algorithm never examines a-charaeter.in T more than onee. It follows that the search is
done in real time. Below we show how to find all the sp/,’ “valiesin linéar time: Together,
this gives an algorithin that does linear preprocessing of ' dndyeak-time search of 7.

It is edsy to @stdbhsh that lh{z algorithm finds all occurrénces ot Pt f and we leave
that as an exercise. :

2.4.2. Prepmcessing for real-time string matching

Theorem 2.4.1, For Pli+11 % X, 8P (Pre=i— J 1, where jisthe \.maf!f)sf position
such that j maps to i and P(Z; + 1y = x. If there is no such j then spj; (P =0

The proof of this theorem is almost identical to the prm)'f"c}f‘Thecaftm 2:3.4 (page 26)
and is left to the reader. Assummg (as usual) that the a iphabef is finite, the following
minor modification of ﬂm preprocessing given c‘drllcr for Knuth- Moms Pmn (Section
2.3.2) yields the needed spj; = values in linear tifhe:”

Z-based l‘ealutlme matchirng

fori = ltendo _
5Py 0 for wely Lhamucr X
for [o= a-downto 2 do
begiﬂ _
= fd (P~ 1
¢ = P(Z, 4 1
Pl o= 2
end,

Note that the linear time (and space) bound for this method réquif‘a that the alphabet &
be finite. This allows us to do (2{ comparisons in constant time. If the size of the alphabet
is explicitly included in the tine and space bounds, then the preproct:ssmg time and space
needed for the dimmhm is O E tr).

2.5. Exercises _
1. in “typlcal” appizcahons of exact matching, sucn as when searchmg for an Enghs?; word

in a book, the smpe bad character rule seems to be as ef%ec’{we as ihe extended bad
character rule. C:i%ve a “hand- wavmg” explanationy for this

2. When searchmg fcr a smg @ Word or a small phrase ina iarg& Eﬁgllsh text, brute force
(the naive aigenthm) is reporteci [184] to run faster than most other methods Give a hand-
waving explanation for this. Ih general terms, how would you. expeat this observat;on 0
nold up. with smaller alphabets {say. in DNA with an aiphabef Bize of four), as the size
of the pattern grows; and when the text has many long sectxons of sam:&ar but not exact
substrings?

3. “Common sense” and ihe (J(nm} worst-case %ime bound- of the Boyer-Moore alganthm
(using anly the bad character rule)yboth would suggeat thatempirical running times increase
with increasing patterndength (assuming & fixed text}. But when searching in-actual English

48 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

3.3. The original preprocessing for Knuth-Morris-Pratt
3.3.1. The method does not use fuixc}axﬁehtﬁl preprocessing

In Section 1.3 we.showed how to compute all the sp; values from Z; values obtained
during fundamental preprocessing of P, The use of Z; values was conceptually simple and
allowed a uniform treatment of various preprocessing problems. However, the classical
prepracessing method. given in Knuth-Morris-Pratt [278] is not based on fundamental
preprocessing. The approach:taken there is very well kivown and i used or extended in
several additional methods (such as the Aho-Corasick method that is discussed next). For
those reasons, a serious student of string algorithms should dlso understand the classicat
algorithm for Knuth-Morris-Pratt preprocessing. : :

The preprocessing algorithm computes sp;(P) for each position i fmm b= 2toi =
{sp1 is Zero), To explain the method, we focus on how to compute spy,.; assuming that sp;
is known for each i < k. The situation is shown in Figure 3.9, where string « is the prefix
of £ -of length spy. That is, ¢ is the' longest string that occurs both as a proper prefix of P
and as a substring of P ending at pmsmon . For clarity, let o’ refer to the copy of o that
ends at position &,

Let x denote character & + l of P,andlet 8 = ﬁx denote the prefix of P oflength spiyy
{i.e., the prefix that the algorithm will next try to compute). Finding spy.., is equivalent to
finding string #. And clearly,

*) f is the longest ptoper'preﬁx of P[1..k] that matches a suffix of Pl1.k] and that
is followed by character x in position |8| + | of P. See Figure 3.10

Our goal is to find spy..1, or equivalently, to find £.

3.3.2. The easy case

Suppose the character just after «r is x (i.e., P(spg + 1) == x). Then, string orx is a prefix
of P and also a proper suffix of P[1..k + 1], and thus spyy; > jox] = spy + 1. Can we
then end our searc¢h for spy,; concluding that sp. equals"“ﬁ?)k 4 1, or is'it possible for
Spr..pto be strictly greater th:m $Pr + 17 "{“rw next lemina settles this.

Lemima 3.3.1. Forany k, spiyq < SPx + L. Further, spiy: = spx + 1 if and only if the
character after « is x. That is, $pyy1 = spy + 1 ifand only if P(spi + 1) = P(k + 1).

PROOF Let B = Bx denote the prefix of P of length spiy. Thatis, 8 = fx is the
longest proper suffix of P[1..k 4 1] that is a prefix of P. If spy, is strictly greater than

SPy k k+1t
Figure 3.9: The situation after finding spy.

k k+1
Figure 3.10: 5py.,.1 Is foung by finding 4.

3.3, THE OQRIGINAL PREPROCESSING FOR KNUTH-MORRIS-PRATT 49

Ky kok+1
Figure 3.11: 5 must be a suffix of o,

spe + 1 = jal + 1, then 8 would be a prefix of P that is longer than «. But § is also a
proper suffix of PII..k] (because Bx is a proper suffix of P{1..k + 11). Those two facts
would contradict the definition of sp, (and the selection of o). Hence spyoy < spy + 1. -

Now clearly, spry, = spe + 1 if the character to the right of « is x, since cx would
then be a prefix of P that also occurs as a proper suffix of P[1..k -+ 1]. Converseiy, if
£pr41 = Spe -+ 1 then the character after @ mustbhe x. O

Lemmna 3.3.1 identifies the largest “candidate™ value for spy.; and suggests how fo
initially look for that value (and for string 8). We should first check the character P(sp,+1),
just to the right of a. If it equals P(spy + 1) then we conclude that # equals «, 8 is ax,
and spy.1 equals sp, 4+ 1. But what do we do if the two characters are not equal?

- 33,3, The general case

When character P(k + 1) 2 P(spy + 1}, then spp; < spp + 1 (by Lemma 3.3.1), s0
$pesr < spx. It follows that 8 must be a prefix of «, and § must be a proper prefix of o.
Now substring 8 == Bx ends at position k + 1 and is of length at most sp;, whereas o’ is
a substring ending at position & and is of length sp;. So f is a suffix of &', as shown in
Pigure 3.11. But since o' is a copy of «, £ is also a suffix of «.

In summary, when P(k + 1) # P(sp, -+ 1), B occurs as a suffix of « and also as a
proper prefix of « followed by character x. So when P(k + 1) # P(sp; + 1), B is the
longest proper prefix of « that matches a suffix of « and that is followed by character x in
position |B} + 1 of P. See Figure 3.11.

However, since o = P[1..5p.], we can state this as

##) B is the longest proper prefix of P[1..sp;] that matches a suffix of P[1..k} and
that is followed by character x in position |8] + 1 of P.

The general reduction

Statements % and *x differ only by the substitution of P[1.sp.} for P[l..k} and are
otherwise exactly the same. Thus, when P(sp, + 1) % P(k + 1), the problem of finding
B reduces to another instance of the original problem but on a smaller string (P[1..5p;]
in place of P[1..k]). We should therefore proceed as before. That is, to search for 8
the algorithm should find the longest proper prefix of P{1..sp,] that matches a suffix
of P{1..sp;] and then check whether the character to the right of that prefix is x. By the
definition of s p;, the required prefix ends at character sp,,, . Soif character P(sp,,, +1) = x
then we have found 8, or else we recurse again, restricting our search to ever smaller
prefixes of P. Eventually, either a valid prefix is found, or the beginning of P is reached.
1n the lattér case, spy = 1if P(1) = P(k -+ 1); otherwise spyay = (L

The complete preprocessing algorithm

Putting all the pieces together gives the following algorithm for finding 8 and sp,.;:

50 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

N

a b x a b g ab x a b r a b x a b g a b x a b zx

M

S SPg k k+1

Figure 3.12: “Bouncing ball” cartoon of original Knuth-Morris-Pratt preprocessing. The arrows show the
stccessive assignments to the variable v,

How to find spy 4
x 1= Pk -+ 1)
U= $py;
While P(v +) # x and v 3£ 0 do
LR I
end;
if P(v+ 1) = x then
Spre1 = v 1
else
Sppsy =0
See the example in Figure 3.12.
The entire set of sp values are found as follows:

i

Algorithm SP(P)
spy =0
Fork = 1ton~1do
begin :
x = Pk +1); b
U l== SPy -
While P(v + 1) # x and v # 0'do ~
v i=S§py;
end;
If P(v+ 1) = x then
SPrsy 1= U+ 1
else
$pi =0
end;

Theorem 3.3.1. Algorithm SP finds all the sp,(P) values in O{n) time, where n is the
length of P.

PROOF Note first that the algorithm consists of two nested loops, a for loop and a while
loop. The for loop executes exactly n — | times, incrementing the value of &k each time.
The while loop executes a variable number of times each time it is entered.

The work of the algorithm is proportional to the number of times the value of v is
assigned. We consider the places where the value of v is assigned and focus on how the
value of v changes over the execution of the algorithm. The value of v is assigned once

3.3. THE ORIGINAL PREPROCESSING FOR KNUTH-MORRIS-PRATT 51

each time the for statement is reached; it is assigned a variable number of times inside
the while loop, each time this loop is reached. Hence the number of times v is assigned is
1 - 1 plus the number of times it is assigned inside the while loop. How many times that
can be is the key question.

Each assignment of v inside the while loop must decrease the value of v, and each of
the n — 1 times v is assigned at the for statement, its value either increases by one or it
remains unchanged (at zero). The value of v is initially zero, so the total amount that the
value of v can increase (at the for statement) over the entire algorithm is at most n — 1. But
since the value of v starts at zero and is never negative, the total amount that the value of
v can decrease over the entire algorithm must also be bounded by n — 1, the total amount
it can increase. Hence v can be assigned in the while loop at most 1 — 1 times, and hence
the total number of times that the value of v can be assigned is at most 2(r ~ 1) = O(n),
and the theorem is proved. [0

3.3.4. How to compute the optimized shift values

The (stronger) sp; values can be easily computed from the sp; values in O(n) time using
the algorithm below. For the purposes of the algorithm, character P(n + 1), which does
not exist, is defined to beudifferent from any character in P.

Algorithm SF(P)
spy = 0;
Fori :=2tondo
begin
U= sp
If P{v + 1) % P({i + 1) then
sp; iy
else
sp. == Sp.;
end;

Theorem 3.3.2. Algorithm SP{P) correctly computes all the sp; values in G(n) time.

PROOF The proof is by induction on the value of . Since 5p) = = Oand sp] < sp; forall i,
then sp)| =0, and the algorithim is correct for / = 1. Now suppose that the value of sp| set
by the algorithm is correct for all i < & and consideri = k. If Plsp, + 1] # P[k+ 1] then
clearly sp; is equal 10 $p;, since the sp, length prefix of P[1.k] satisfies all the needed
requirements. Hence in this case, the algorithm correctly sets sp;.

If P(sp, + 1} = P(k + 1), then sp, < spi and, since P[1..sp,] is a suffix P[i Kl
spr, can be expressed-as the length of the longest proper prefix of P[1..sp.] that also
occurs as a suffix of P[1..sp;] with the condition that P(k 4+ 1) # FP(sp, + I). But since
P(k 41} = P(spy + 1), that condition can be rewritten as P(sp, + 1) % P(sp, + 1).
By the induction hypothesis, that value has already been correctly computed as s Py, SO
when P(spy + 1) = Pk + 1) the algorithm correctly sets sp; to sp, .

Because the algorithm. only does constant work per position, the total time for the

“algorithm'is O(n). 0

It is i_nier,estiﬁg to compare the classical method for computing sp and sp’ and the
method based on fundamental preprocessing (i.¢., on Z values). In the classical methed
the (weaker) sp values are computed first and then the more desirable sp’ values are derived

32 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

Figure 3.13: Keyword tree K with five patterns,

from them, whereas the order is just the opposite in the method based on fundamental
preprocessing.

3.4. Exact matching with a set of patterns

An immediate and important generalization of the exact matching problem is to find all
occurrences in text T' of any pattern in a set of patterns P = {P, P, ..., P,}. This
generalization is called the exact set marching problem. Let n now denote the total length
of all the patterns in P and m be, as before, the length of T. Then, the exact set matching
problem can be solved in ime O(n + zm) by separately using any linear-time method for
each of the z patterns.

Perhaps surprisingly, the exact set matching problem can be solved faster than, O(n -
zm). e can be sotved in O(n 4 m + k) time, where £ is the number of occurrences in T of
the patterns from . The first method to achieve this bound.js.due to Aho and Corasick
[9].2 In this section, we develop the Aho-Corasick method; some of the proofs are left
to the reader. An equally efficient, but more robust, method for the exact set matching
problem is based on suffix trees and is discussed in Section 7.2.

Definition The keyword tree for set P is a rooted directed tree K satisfying three
conditions: I. each edge is labeled with exactly one character; 2. any two edges out of
the same node have distinct tabels; and 3. every pattern P; in P maps to some node v of
K such that the characters on the path from the root of K to v exactly spell out 2;, and
every leaf of K is mapped to by some pattern in P.

For example, Figare 3.13 shows the keyword tree for the set of patterns {potato, poetry,
pottery, science, school}.

Clearly, every node in the keyword tree corresponds to-a prefix of one of the patterns
in P, and every prefix of a pattern maps to a distinct node in the tree.

Assuming a fixed-size alphabet, it is easy to construct the keyword tree for P in O(n)
time. Define K; to be the (partial} keyword tree that encodes patterns Py, ..., P of P.

2 There is a more recent exposition of the Aho—Corasick method in [8], where the algorithm is used just as an
“acceptor”, deciding whether ornot there is an occurrence fn T of at least onie patterd from P. Because we will
want to explicitly find all occurrénces, that version of the algorithm is too limited to use here.

