

Introduction to SQL

Introduction to Oracle
• Log onto grace system
• Go into public directory

cd public/Mondial_dataset
• Start oracle

tap oraclient
• Your SID is 'dbclass1'
• Start sqlplus

sqlplus
• Enter user name and password
• To change your password

alter user <username> identified by <pass>;

Load tables
• Copy Mondial_dataset from public directory to your own

cp -r ../../public/Mondial_dataset .
cd Mondial_dataset

• Start sqlplus
sqlplus

• Create tables
@ create

• Load data
@ data

• If you need to trash everything
@ drop

Basic Query Structure
• A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

– Ai represents an attribute

– Ri represents a relation
– P is a predicate.

• The result of an SQL query is a relation.

The select Clause
• The select clause list the attributes desired in the result of

a query
– corresponds to the projection operation of the relational algebra

• Example: find the names of all countries:
select Name
from Country

• NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)
– E.g., Name ≡ NAME ≡ name
– Some people use upper case wherever we use bold font.

The select Clause (Cont.)
• SQL allows duplicates in relations as well as in query

results.
• To force the elimination of duplicates, insert the keyword

distinct after select.
• Find the names of all cities that have the headquarters of

an organization
select distinct city
from organization

• The keyword all specifies that duplicates not be removed.

select all city
from organization

The select Clause (Cont.)
• An asterisk in the select clause denotes “all attributes”

select *
from organization

• The select clause can contain arithmetic expressions
involving the operation, +, –, ∗, and /, and operating on
constants or attributes of tuples.

• The query:
 select code, name, area/100
 from country
would return a relation that is the same as the country
relation, except that the value of the attribute area is
divided by 100.

The where Clause
• The where clause specifies conditions that the result must

satisfy
– Corresponds to the selection predicate of the relational algebra.

• To find all cities in USA with population > 80000
select name
from city
where country = ‘USA' and population > 80000

• Comparison results can be combined using the logical
connectives and, or, and not.

• Comparisons can be applied to results of arithmetic
expressions.

The where clause...
• Find all provinces (states) in the USA that have more than

20 people per square mile
•

select name
from province
where country = 'USA'
 and population / area > 20

The from Clause

• The from clause lists the relations involved in the
query
– Corresponds to the Cartesian product operation of the

relational algebra.
• Find the Cartesian product country X province

select ∗
from country,province

– generates every possible country – province pair, with all
attributes from both relations.

• Cartesian product not very useful directly, but useful
combined with where-clause condition (selection
operation in relational algebra).

Joins
• For the names of all countries in the UN

 select country.name, population
 from country, organization
 where organization.country = code
 and organization.name = 'United Nations'

• Note: you need to clarify ambiguous names

Rename variables/relations
 select c.name, population

 from country [as] c, organization [as] o
 where o.country = code
 and o.name = 'United Nations'

Natural join
• Matches attributes with same name

 select ∗
from country natural join province

• Caveat: country.name and province.name don't mean the
same thing – result is incorrect/unexpected

• But

select *
from economy natural join population

works! (economy.country and population.country refer to the
same thing)

Natural join cont..
• How do you get the name of the country as well?

String Operations
• SQL includes a string-matching operator for comparisons

on character strings. The operator “like” uses patterns that
are described using two special characters:

– percent (%). The % character matches any substring.
– underscore (_). The _ character matches any character.

• Find the names of all instructors whose name includes the
substring “dar”.

select name
from instructor
where name like '%dar%'

• Match the string “100 %”
like ‘100 \%' escape '\'

• SQL supports a variety of string operations such as
– concatenation (using “||”)
– converting from upper to lower case (and vice versa)
– finding string length, extracting substrings, etc.

Ordering the Display of Tuples
• List in alphabetic order the names of all instructors

 select distinct name
from instructor
order by name

• We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the
default.
– Example: order by name desc

• Can sort on multiple attributes
– Example: order by dept_name, name

Where Clause Predicates
• SQL includes a between comparison operator
• Example: Find the names of all instructors with salary

between $90,000 and $100,000 (that is, ≥ $90,000 and
≤ $100,000)
– select name

from instructor
where salary between 90000 and 100000

• Tuple comparison
– select name, course_id

from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

Set Operations
• Find courses that ran in Fall 2009 or in Spring 2010

� Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
 union
(select course_id from section where sem = ‘Spring’ and year = 2010)

� Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
 intersect
(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)
 except
(select course_id from section where sem = ‘Spring’ and year = 2010)

Set Operations
• Set operations union, intersect, and except

– Each of the above operations automatically eliminates duplicates
 To retain all duplicates use the corresponding multiset

versions union all, intersect all and except all.

 Suppose a tuple occurs m times in r and n times in s, then,
it occurs:
– m + n times in r union all s
– min(m,n) times in r intersect all s
– max(0, m – n) times in r except all s

Null Values
• It is possible for tuples to have a null value, denoted by

null, for some of their attributes
• null signifies an unknown value or that a value does not

exist.
• The result of any arithmetic expression involving null is null

– Example: 5 + null returns null
• The predicate is null can be used to check for null values.

– Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

Null Values and Three Valued Logic
• Any comparison with null returns unknown

– Example: 5 < null or null <> null or null = null
• Three-valued logic using the truth value unknown:

– OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown

– AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

– NOT: (not unknown) = unknown
– “P is unknown” evaluates to true if predicate P evaluates to

unknown
• Result of where clause predicate is treated as false if it

evaluates to unknown

Aggregate Functions
• These functions operate on the multiset of values of a

column of a relation, and return a value
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

Aggregate Functions (Cont.)
• Find the average salary of instructors in the Computer

Science department
– select avg (salary)

from instructor
where dept_name= ’Comp. Sci.’;

• Find the total number of instructors who teach a course in
the Spring 2010 semester
– select count (distinct ID)

from teaches
where semester = ’Spring’ and year = 2010

• Find the number of tuples in the course relation
– select count (*)

from course;

Aggregate Functions – Group By
• Find the average salary of instructors in each department

– select dept_name, avg (salary)
from instructor
group by dept_name;

avg_salary

Aggregation (Cont.)
• Attributes in select clause outside of aggregate functions

must appear in group by list
– /* erroneous query */

select dept_name, ID, avg (salary)
from instructor
group by dept_name;

Aggregate Functions – Having Clause
• Find the names and average salaries of all departments

whose average salary is greater than 42000

 Note: predicates in the having clause are applied after the
 formation of groups whereas predicates in the where
 clause are applied before forming groups

select dept_name, avg (salary)
from instructor
group by dept_name
having avg (salary) > 42000;

Null Values and Aggregates
• Total all salaries

select sum (salary)
from instructor

– Above statement ignores null amounts
– Result is null if there is no non-null amount

• All aggregate operations except count(*) ignore tuples with
null values on the aggregated attributes

• What if collection has only null values?
– count returns 0
– all other aggregates return null

Nested Subqueries
• SQL provides a mechanism for the nesting of subqueries.
• A subquery is a select-from-where expression that is

nested within another query.
• A common use of subqueries is to perform tests for set

membership, set comparisons, and set cardinality.

Example Query
• Find courses offered in Fall 2009 and in Spring 2010

� Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and
 course_id in (select course_id
 from section
 where semester = ’Spring’ and year= 2010);

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and
 course_id not in (select course_id
 from section
 where semester = ’Spring’ and year= 2010);

Example Query
• Find the total number of (distinct) students who have taken

course sections taught by the instructor with ID 10101

� Note: Above query can be written in a much simpler manner. The
 formulation above is simply to illustrate SQL features.

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in
 (select course_id, sec_id, semester, year
 from teaches
 where teaches.ID= 10101);

Set Comparison
• Find names of instructors with salary greater than that of

some (at least one) instructor in the Biology department.

� Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name = ’Biology’);

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = ’Biology’;

Definition of Some Clause
• F <comp> some r ⇔ ∃ t ∈ r such that (F <comp> t)

Where <comp> can be: <, ≤, >, =, ≠

0
5

6

(5 < some) = true

0
5
0

) = false

5

0
5(5 ≠ some) = true (since 0 ≠ 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) ≡ in
However, (≠ some) ≡ not in

Example Query
• Find the names of all instructors whose salary is greater

than the salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary
 from instructor
 where dept name = ’Biology’);

Definition of all Clause
• F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

0
5

6

(5 < all) = false

6
10
4

) = true

5

4
6(5 ≠ all) = true (since 5 ≠ 4 and 5 ≠ 6)

(5 < all

) = false(5 = all

(≠ all) ≡ not in
However, (= all) ≡ in

Test for Empty Relations
• The exists construct returns the value true if the argument

subquery is nonempty.
• exists r ⇔ r ≠ Ø
• not exists r ⇔ r = Ø

Correlation Variables
• Yet another way of specifying the query “Find all courses

taught in both the Fall 2009 semester and in the Spring
2010 semester”
 select course_id
 from section as S
 where semester = ’Fall’ and year= 2009 and
 exists (select *
 from section as T
 where semester = ’Spring’ and year=
2010
 and S.course_id= T.course_id);

• Correlated subquery
• Correlation name or correlation variable

Not Exists
• Find all studentswho have taken all courses offered in the

Biology department.

select distinct S.ID, S.name
from student as S
where not exists ((select course_id
 from course
 where dept_name = ’Biology’)
 except
 (select T.course_id
 from takes as T
 where S.ID = T.ID));

� Note that X – Y = Ø ⇔ X ⊆ Y

� Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples
• The unique construct tests whether a subquery has any

duplicate tuples in its result.
• Find all courses that were offered at most once in 2009

 select T.course_id
from course as T
where unique (select R.course_id
 from section as R
 where T.course_id= R.course_id
 and R.year = 2009);

Derived Relations
• SQL allows a subquery expression to be used in the from

clause
• Find the average instructors’ salaries of those departments

where the average salary is greater than $42,000.”
 select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary
 from instructor
 group by dept_name)
where avg_salary > 42000;

• Note that we do not need to use the having clause
• Another way to write above query

 select dept_name, avg_salary
from (select dept_name, avg (salary)
 from instructor
 group by dept_name) as dept_avg (dept_name,
avg_salary)

 where avg_salary > 42000;

Derived Relations (Cont.)
• And yet another way to write it: lateral clause

 select name, salary, avg_salary
 from instructor I1, lateral (select avg(salary) as avg_salary
 from instructor I2
 where I2.dept_name= I1.dept_name);

With Clause
• The with clause provides a way of defining a temporary

view whose definition is available only to the query in
which the with clause occurs.

• Find all departments with the maximum budget

 with max_budget (value) as
 (select max(budget)
 from department)
 select budget
 from department, max_budget
 where department.budget = max_budget.value;

