Advanced SQL

Domain Types in SQL

char(n). Fixed length character string, with user-specified
length n.

varchar(n). Variable length character strings, with user-
specified maximum length n.

int. Integer (a finite subset of the integers that is machine-
dependent).

smallint. Small integer (a machine-dependent subset of the
integer domain type).

numeric(p,d). Fixed point number, with user-specified
precision of p digits, with n digits to the right of decimal point.

real, double precision. Floating point and double-precision
floating point numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of
at least n digits.

More are covered in Chapter 4.

Create Table Construct

An SQL relation is defined using the create table command:
create tabler (A, D,, A, D,, ..., A D,
(integrity-constraint,),

-(i-r;tegrity-constraintk))
— ris the name of the relation
— each A, is an attribute name in the schema of relation r
— D. is the data type of values in the domain of attribute A,

Example:
create table instructor (
ID char(5),
name varchar(20) not null,
dept _name varchar(20),
salary numeric(8,2))

insert into instructor values ('10211°, 'Smith’, 'Biology’, 66000);
insert into instructor values ('10211°, null, 'Biology’, 66000);

Integrity Constraints in Create Table

* not null
e primary key (A,, ..., A)
- foreign key (A, ..., A) references r

Example: Declare branch_name as the primary key for branch

create table instructor (

ID char(b),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8,2),

primary key (ID),
foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

And a Few More Relation Definitions
* create table student (

ID varchar(5) primary key,
name varchar?ZO?not null,
dept name varchar(20),

tot cred numeric(3,0),
foreign key (dept_name) references department));

* create table takes (

ID varchar(5) primary key,
course id varchar(8),
sec id varchar(8),
semester varchar(GJ,
year numericg ,0),
rade varchar(2),

oreign key ng) references student,
foreign key (course_id, sec_id, semester, year)

references section);

And more still

* create table course (
course _id varcharg% ;orimary key,

title varchar
dept name varchar(20),
credits numeric(2,0),

foreign key (dept_name) references department));

Drop and Alter Table Constructs

* drop table

* alter table
— alter table radd A D

 where A is the name of the attribute to be added to relation r and D is the
domain of A.

* All tuples in the relation are assigned null as the value for the new attribute.

— alter table rdrop A

* where A is the name of an attribute of relation r
* Dropping of attributes not supported by many databases.

Modification of the Database — Deletion

 Delete all instructors
delete from instructor

* Delete all instructors from the Finance department
delete from instructor
where dept name= 'Finance’;

* Delete all tuples in the instructor relation for those
Instructors associated with a department located in the

Watson building.

delete from instructor
where dept name in (select dept name
from department
where building = 'Watson’);

Example Query

* Delete all instructors whose salary is less than the average
salary of instructors

delete from instructor
where salary< (select avg (salary) from instructor);

Problem: as we delete tuples from deposit, the average salary changes
Solution used in SQL:
1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above (without
recomputing avg or retesting the tuples)

Modification of the Database — Insertion

* Add a new tuple to course

Insert into course
values ('CS-437’, 'Database Systems’, '‘Comp. Sci.’, 4);

* or equivalently

insert into course (course _id, title, dept name, credits)
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

* Add a new tuple to student with tot creds set to null

insert into student
values ('3003’, 'Green’, 'Finance’, null);

Modification of the Database — Insertion

. f\dg all instructors to the student relation with tot creds set
0

insert into student
select /D, name, dept _name, 0
from instructor

* The select from where statement is evaluated fully before
any of its results are inserted into the relation (otherwise
gueries like

insert into fable1 select * from table1
would cause problems)

Modification of the Database — Updates

* Increase salaries of instructors whose salary is over
$100,000 by 3%, and all others receive a 5% raise

— Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

— The order is important
— Can be done better using the case statement (next slide)

Case Statement for Conditional Updates

* Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
delse salary * 1.03
en

Updates with Scalar Subqueries

* Recompute and update tot_creds value for all students

update student S _
set tot cred = (select sum(credits)
from takes natural join course

where S./D= takes.ID and
takes.grade <> 'F’ and
takes.grade is not null);

* Sets tot creds to null for students who have not taken any
course

* Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
glse 0
en

Views

In some cases, it is not desirable for all users to see the
entire logical model (that is, all the actual relations stored in
the database.)

Consider a person who needs to know an instructors name
and department, but not the salary. This person should see
a relation described, in SQL, by

select ID, name, dept name
from instructor

A view provides a mechanism to hide certain data from the
view of certain users.

Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

View Definition

* Aview is defined using the create view statement which
has the form

create view v as < query expression >

where <query expression> is any legal SQL expression.
The view name Is represented by v.

* Once a view is defined, the view name can be used to refer
to the virtual relation that the view generates.

* View definition is not the same as creating a new relation by
evaluating the query expression

— Rather, a view definition causes the saving of an expression; the
expression is substituted into queries using the view.

Example Views

* A view of instructors without their salary

create view faculty as
select /D, name, dept _name
from instructor

* Find all instructors in the Biology department
select name
from faculty
where dept_name = ‘Biology’

* Create a view of department salary totals
create view departments_total salary(dept _name, total salary) as
select dept _name, sum (salary)
from instructor
group by dept name,;

Views Defined Using Other Views

* create view physics fall 2009 as
select course.course id, sec _id, building, room _number
from course, section
where course.course id = section.course id
and course.dept_name = 'Physics’
and section.semester = 'Fall’
and section.year = 2009,

* create view physics fall 2009 watson as
select course id, room _number

from physics fall 2009
where building= "Watson’;

View Expansion
* Expand use of a view in a query/another view

create view physics fall 2009 watson as
(select course _id, room _number
from (select course.course id, building, room _number
from course, section
where course.course id = section.course id
and course.dept_name = 'Physics’
and section.semester = 'Fall’
and section.year = '2009’)
where building= "Watson’;

Views Defined Using Other Views

One view may be used in the expression defining another
view,

A view relation v, is said to depend directly on a view
relation v, if v, is used Iin the expression defining v,

A view relation v, is said to depend on view relation v, if
either v, depends directly to v, or there is a path of

dependencies from v, to v,

{?vil?w relation v is said to be recursive if it depends on
itself.

View Expansion

A way to define the meaning of views defined in terms of
other views.

Let view v, be defined by an expression e, that may itself
contain uses of view relations.

View expansion of an expression repeats the following
replacement step:

repeat | |
ind any view relation v, in e,
Replace the view relation v, by the expression defining v,

until no more view relations are present in e,

As long as the view definitions are not recursive, this loop
will terminate.

Update of a View

* Add a new tuple to faculty view which we defined earlier
insert into faculty values ('30765°, 'Green’, 'Music’);

;I'hils iInsertion must be represented by the insertion of the
uple

('30765°, 'Green’, 'Music’, null)
into the instructor relation.

Some Updates cannot be Translated Uniquely

* create view instructor _info as
select /D, name, building
from instructor, department
where instructor.dept _name= department.dept _name;

* insert into instructor info values ('69987°, 'White’, 'Taylor’);

* which department, if multiple departments in Taylor?
* what if no department is in Taylor?

* Most SQL implementations allow updates only on simple
vViews

— The from clause has only one database relation.

— The select clause contains only attribute names of the relation, and
does not have any expressions, aggregates, or distinct
specification.

— Any attribute not listed in the select clause can be set to null
— The query does not have a group by or having clause.

And Some Not at All

* create view history Instructors as
select *
from instructor
where dept name= 'History’;

* Insert ('25566°, 'Brown’, '‘Biology’, 100000) into
history instructors

Transactions

Unit of work
Atomic transaction

— either fully executed or rolled back as if it never occurred
|solation from concurrent transactions
Transactions begin implicitly

— Ended by commit work or rollback work

But default on most databases: each SQL statement
commits automatically

— Can turn off auto commit for a session (e.g. using API)
— In SQL:1999, can use: begin atomic end

Integrity Constraints

* Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.

— A checking account must have a balance greater than $10,000.00.
— A salary of a bank employee must be at least $4.00 an hour.
— A customer must have a (non-null) phone number.

Constraints on a Single Relation

not null

primary key

unique

check (P), where P is a predicate

Not Null and Unique Constraints

* not null
— Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

 unique (A, A, ..., A)
— The unique specification states that the attributes A1, A2, ... Am
form a candidate key.

— (klanciidate keys are permitted to be null (in contrast to primary
eys).

The check clause

* check (P)
where P is a predicate

Example: ensure that semester is one of fall, winter, spring or
summer:

create table section (
course_id varchar (8),
sec _id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room _number varchar (7),
time slot id varchar (4),
primary key (course_id, sec_id, semester, year),
check (semester in ('Fall’, 'Winter’, 'Spring’, 'Summer’))

Referential Integrity

* Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in

another relation.

— Example: If “Biology” is a department name appearing in one of the
tuples in the instructor relation, then there exists a tuple in the
department relation for “Biology”.

* Let A be a set of attributes. Let R and S be two relations
that contain attributes A and where A is the primary key of
S. Ais said to be a foreign key of R if for any values of A
appearing in R these values also appear in S.

Cascading Actions in Referential Integrity

* create table course g
course _id char(5) primary key,
title varchar(20),
dept_name varchar(20) references department

)

* create table course (

dept_name varchar(20),

foreign key (dept _name) references department
on delete cascade
on update cascade,

)

e alternative actions to cascade: set null, set default

Integrity Constraint Violation During Transactions
° E g

create table erson (
ID char(1
name char 40
mother char(10
father char(10)
Prlmary key ID,
oreign key father references person,
foreign key mother references person)

* How to insert a tuple?

* What if mother or father is declared not null?

— constraint father_ref foreign key father references person,
constraint mother ref foreign key mother references person)

— set constraints father ref, mother ref deferred

Complex Check Clauses

check (time_slot _id in (select time_slot id from time _slot))
— why not use a foreign key here?

Every section has at least one instructor teaching the
section.

— how to write this?

Unfortunately: subquery in check clause not supported by
pretty much any database

— Alternative: triggers (later)

create assertion <assertion-name> check <predicate>;
— Also not supported by anyone

Built-in Data Types in SQL

date: Dates, containing a (4 digit) year, month and date
— Example: date ‘2005-7-27"

time: Time of day, in hours, minutes and seconds.

— Example: time ‘09:00:30° time '09:00:30.75’
timestamp: date plus time of day

— Example: timestamp 2005-7-27 09:00:30.75

interval: period of time

— Example: interval ‘1’ day

— Subtracting a date/time/timestamp value from another gives an
Interval value

— Interval values can be added to date/time/timestamp values

