CMSC 424: Database Design

Introduction to databases
Relational Model

SQL

Why databases?

* An example from my research: Clinical data from diarrhea
study

 Need to store data about:

— Individual patients: age, clinical parameters, disease state, etc.
— Laboratory results: microbiology, virology, parasitology, etc.
— DNA samples: concentration, location on plate, etc.

— Results of computational analysis: files, number of sequences in
files, etc.

* Do you really need a database?

Flat-file solution

« Samples spreadsheet (Samples.csv)
— sample identifier
— country
— case status

* Laboratory spreadsheet (Lab_out.csv)
— clinical parameters
— drugs administered
— results of laboratory tests

« Computational analysis spreadsheet (454.csv)
— DNA information

— File name
— # of sequences detected

Flat-file solution

* Why not all the data in one file?
— file can get very big

— different people may want to update the information separately
(doctor, lab technician, bioinformatician)

« How do we match the files to each other?

— all files need to refer to the same set of IDs (in our case "Sample
ID")

« Will this work well enough?
— Perhaps...depending on how you use it

Flat-file solution: querying

* Find the identifiers for patients from Gambia that have
Giardia
— fairly easy: all data in one file
grep '‘Gambia .* Giardia' samples.csv | cut -f 1
— Note: | need to know exactly how the file is organized

* Find the age of all sick children from Gambia
— a bit harder: information is in two different files
join-11-21 Lab_Out.csv samples.csv | grep 'Gambia’ | cut -f 7
— Note: again | need to know exactly how the files are organized

— Note: | also need to keep the files sorted by the identifier, otherwise
the 'join' command doesn't work

Flat-file solution: querying

* Find the average number of sequences found in children
under 2 that have cholera
— Huh?
— Now | need to join information from three files
— and do some math
— perhaps I'll have to write some code

* Note: there's a lot of stuff you can do with just simple
command-line operations in Unix

Flat-file solution: updating

 How do | add information about a new patient?
— | need to update all three files
— Make sure to not have any typos

« How about if | want to add more fields to one or more files
(e.g. a new laboratory test)

— | need to make sure | don't mess up the order of the columns in any
of the files (otherwise my scripts won't work)

 How do | ensure certain constraints are met?
— some fields should never be empty (e.g. identifier)

— other fields must haver reasonable values (e.g. 97 < body
temperature < 110)

— records are sorted by their identifier (so that join command works)
— age is a numeric value

The better solution

« Database management systems handle all the challenges
we just encountered

* They also handle a lot more

— Atomicity: certain groups of operations must operate as one —
either they all succeed, or the whole block fails

For example: if | add a new patient to the three files, | want the
record to be added to all, or none, even if the system crashes as
I'm adding the information

— Durability: once an operation succeeds, the state of the database is
appropriately changed

For example: | add a new patient to the three files, tell the user that
| did, then the system crashes. When the system comes up it better
have the new patient in the database.

DBMS...cont

« Databases also handle:
— Concurrency: adequately handle multiple simultaneous requests

Example: A doctor and a lab technician want to simultaneously add
the same patient to the database.

The doctor looks in the sample spreadsheet and does not find the patient
The doctor generates a new identifier (1001)

The lab technician looks in the sampe spreadsheet and does not find the
patient

The lab technician generates a new identifier (1002)

The doctor records the patient's information in the samples spreadsheet
under identifier 1001

The lab technician records the patient's information in the Lab_out
spreadsheet under identifier 1002

DBMS...cont

« Databases also handle
— Security: only authorized users can see the data

— Privacy: a user may only see the data that they need to access
(e.g. lab technician cannot see clinical parameters)

* Most of these features are difficult or impossible to
implement in a flat-file system

DBMS at a Glance

Data Modeling
How the data are represented

Data Retrieval
How the data are accessed/queried

Data Storage
How the data are organized on disk

Data Integrity
How concurrency and crashes are handled

Architecture of a DBMS

naive users

System Components

& Interfaces

programmers DB exPerts DBA
Y Y
User interfaces/Forms Query '
Y
Applic. programs / DB Design
DML precompiler |<—= processor DDL compiler
T
! d : b
g . atabase
Application (object) code > manager
/]

DML.: Data Manipulation Language
DDL: Data Definition Language
DBA: Data Base Administrator

file
manager

T

data dictionary

data files

~_

—

/

12

n=EWO

Relational databases

Organize the data in a series of "tables" or "relations"

Conceptually same as the spreadsheets we used in our
early example

The column headers are called "attributes”
The elements in the tables are called "rows" or "tuples”

13

Example of a Relation

attributes
% (or columns)

1D name dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000 ~
12121 | Wu Finance 90000 tuples
15151 | Mozart | Music 40000 (or rows)
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

More about relational model

Tuples assumed to be unordered

Attributes not necessarily unique (many rows can have
same value in a column)

Key — an attribute, or combination of attributes, that can be
used to select a unique tuple

e.g. the Sample ID field in my example
or Street name + Street number + Apartment number for an
address

Foreign key constraint/relationship — link between the keys
of two or more tables

Relation Schema and Instance

- AL A, ..., A are attributes

-« R=(A, A, ..., A)is a relation schema
Example:
instructor = (ID, name, dept name, salary)

 Formally, givensets D,, D,, D_a relation ris a subset

of
D, x D, x...xD,

Thus, a relation is a set of n-tuples (a,, a,, ..., a,) where
each a, U D,

Schema Diagram for University Database

|l!r+v

year

advisor

s id
iid

F VY

takes student
ID P m <
= . name
COUTSE id dept_name
sec_id tot cred
semester
year
: grade
section course
course_id < _E course_id department
sec_id < title dept_name
semester d
vear < epi_name | building
year R ; credits
building time_slot budget
r0OM_1o time slot id
time_slot_id |_ day
start time
end_time
prereq instructor
classroom L course id D
building prereq_id name
»| room no dept_name
capacity teaches salary
ID
|| course id
sec_id
semester

Basic Query Structure
* A typical SQL query has the form:

select A A, ..., A
fromr,r, ..., 1,
where P

n

— A.represents an attribute
— R represents a relation
— Pis a predicate.
* The result of an SQL query is a relation.

The select Clause

The select clause list the attributes desired in the result of
a query
— corresponds to the projection operation of the relational algebra

Example: find the names of all instructors:
select name
from instructor
NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)
— E.g., Name = NAME = name
— Some people use upper case wherever we use bold font.

The select Clause (Cont.)
SQL allows duplicates in relations as well as in query
results.

To force the elimination of duplicates, insert the keyword
distinct after select.

Find the names of all departments with instructor, and
remove duplicates

select distinct dept name
from instructor

The keyword all specifies that duplicates not be removed.

select all dept name
from instructor

The select Clause (Cont.)

* An asterisk in the select clause denotes “all attributes”

select *
from instructor

* The select clause can contain arithmetic expressions
involving the operation, +, —, [J and /, and operating on
constants or attributes of tuples.

* The query:

select /D, name, salary/12
from instructor

would return a relation that is the same as the instructor

relation, except that the value of the attribute salary is
divided by 12.

The where Clause

The where clause specifies conditions that the result must
satisfy

— Corresponds to the selection predicate of the relational algebra.

To find all instructors in Comp. Sci. dept with salary >
80000

select name
from instructor

where dept name = ‘Comp. Sci.' and salary >
80000

Comparison results can be combined using the logical
connectives and, or, and not.

Comparisons can be applied to results of arithmetic
expressions.

The from Clause

* The from clause lists the relations involved in the
query

— Corresponds to the Cartesian product operation of the
relational algebra.

* Find the Cartesian product instructor X teaches
select [
from instructor, teaches

— generates every possible instructor — teaches pair, with all
attributes from both relations.

* Cartesian product not very useful directly, but useful
combined with where-clause condition (selection
operation in relational algebra).

Cartesian Product

teaches

Instructor

| tro CotLrse_ Fd | sec_ i | serrrester | YEar
i1 HarHe depit_riarmie salary TOLOL CS_101 1 Tall 009
10101 Srinivasan Comp. Sci. 65000 10101 CS-315 il) Spring 2010
12121 wWu Finance 0000 10101 CS-34V7 il TFall 2009
15151 Mo=zart Music 40000 12121 FIN-2071 1 Spring 2010
22232 Finstein Physics 295000 é 3 é 3 é ?jg;{;lft‘i 11 15;1911’11“8 ;8 é g
SR Eil el EListaxy s00ao 32343 FHIS-351 1 s;ring 2010
33456 Gold Physics 87000 15565 CS-101 1 Spring 2010
45565 Katz Comp. Scai. 75000 45565 CsS-319 1 Spring 2010
58583 Califieri History 62000 THETO66 BIO-101 1 SumMmmer 2009
6543 5111811 Finance S8O0000 FTOTO66 BI(CO-301 i I Suurmaamer 2010
6766 Crick Biology 72000 83821 | 5-1920 1 Spring 2009
83821 Brandt Comp. Sci. 292000 853821 C5-190 2 Spring 2009
98345 Kim Elec. Eng 80000 3321 | <5319 = Spring =010
= = o8345 EE-181 u Spring 2009

Trist T PEAIVIEe dept narmie| salary | teaches ID| course id | sec id sermester | year

10101 |Srinivasan| Physics o5000 10101 CS-101 1 Fall 2009

10101 Srinivasan Physics 95000 10101 CsS-315 1 Spring 2010

10101 Srimivasan| Physics oO5000 10101 C5-347 1 TFall 2009

10101 |Srinivasan| Physics 95000 10101 FIN-201 1 Spring 2010

10101 |Srinivasan| Physics 95000 15151 MU-199 1 Spring 2010

10101 |Srinivasan| Physics 95000 22222 PHY-101 1 Fall 2009

12121 | Wu Physics 95000 10101 CS-101 1 Fall 2009

12121 |[Wu Physics 95000 10101 Cs5-315 1 Spring 2010

12121 |[Wu Physics 95000 10101 CS-347 1 Fall 2009

12121 VYW Physics oO5000 10101 FIN-201 1 Spring 2010

12121 YW Physics 95000 15151 MU-199 1 Spring 2010

12121 WWu Physics oO5000 22222 PHY-101 1 Fall 2009

15151 |Mo=zart Physics 95000 10101 CS-101 1 Fall 2009

15151 |Mo=zart Fhysics o95000 10101 CS-315 1 Spring 2010

15151 |Mo=zart Physics 95000 10101 CS-347 1 Fall 2009

15151 |Mo=zart Physics 95000 10101 FINN-201 1 Spring 2010

15151 | Mo=zart Physics 95000 15151 MU-199 1 Spring 2010

15151 |Mo=zart Physics 95000 20222 PHY-101 1 Fall 2009

22222 |Einstein Physics 25000 10101 CS-101 1 Fall 2009

22222 |Einstein Physics 95000 10101 CS-315 1 Spring 2010

22222 |Einstein Physics 95000 10101 CS-347 1 Fall 2009

222272 |Einstein Physics 95000 101071 FIIN-201 1 Spring 2010

22222 |Einstein Physics 95000 15151 MU-199 1 Spring 2010

22222 | Einstein Physics 95000 22222 PHY-101 1 Fall 2009

Getting started

* QOracle (available on grace systems)
$ sqlplus

 MySQL (free software)
$ mysql

* From here on it's a command line interface

25

Getting started...cont
« Select database

use database ;

 Note: commands end with ;

26

Database resources

http://www.dbis.informatik.uni-goettingen.de/Mondial/
You can use MyS3Sql (easy to do at home)
But... must ensure that code runs in Oracle on grace

Some useful software:

— MySQL Workbench — http://wb.mysgl.com
Database management tool, also allows you to build schemas

— Xampp - http://sourceforge.net/projects/xampp/
Includes webserver, mysql, php, etc. particularly useful for the
project

— PHPMyAdmin — http://www.phpmyadmin.net/home_page/index.php
Web-based administration of MySQL database

27

