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Background: A computational system for analysis of the repetitive structure of genomic
sequences is described. The method uses suffix trees to organize and search the input sequences;
this data structure has been used previously for efficient computation of exact and degenerate
repeats.

Results: The resulting software tool collects all repeat classes and outputs summary statistics as
well as a file containing multiple sequences (multi fasta), that can be used as the target of searches.
Its use is demonstrated here on several complete microbial genomes, the entire Arabidopsis
thaliana genome, and a large collection of rice bacterial artificial chromosome end sequences.

Conclusions: We propose a new clustering method for analysis of the repeat data captured in suffix
trees. This method has been incorporated into a system that can find repeats in individual genome
sequences or sets of sequences, and that can organize those repeats into classes. It quickly and
accurately creates repeat databases from small and large genomes. The associated software
(RepeatFinder), should prove helpful in the analysis of repeat structure for both complete and partial

genome sequences.

Background

Repetitive sequences present many difficulties for genome
sequencing and analysis. The presence of large numbers of
repeats often confounds sequence assembly, especially if the
repeats are long and highly conserved. The presence of low
copy-number repeats can also confound assembly, especially
for whole-genome shotgun sequencing projects [1]. Once a
genome has been assembled, repeats take on a new and
more important role involving their biological function.
Certain classes of repeats, such as transposons, perform a
function by allowing mobile elements to move around a
genome. Other classes belong to less well-defined categories
with respect to their role, though they may be even more
ubiquitous. Repetitive sequences appear to dominate the
centromeres of many eukaryotes [2], and telomeric and sub-
telomeric repeats extend for thousands or tens of thousands

of nucleotides at the ends of chromosomes. These repeats
also appear elsewhere in the genome, for reasons as yet
unknown. For these and other reasons, it is critical to both
the assembly and analysis of genomic sequences to identify
and characterize repetitive sequence elements.

There are numerous computational methods for detecting
repeats, in one form or another, in genomic DNA
sequences. These include algorithms that locate repeated
substrings, including tandem repeats [3-6], as well as pro-
grams for identifying known repeats, such as the widely-
used RepeatMasker [7]. RepeatMasker uses a database of
known repeat sequences and implements a string-matching
algorithm to find copies of those repeats in a new sequence.
A more rapid implementation of the same approach is
MaskerAid [8], a wrapper for WU-BLAST [9,10] that uses
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the BLAST engine instead of the CrossMatch algorithm.
Most of these tools have some restriction on the maximum
length of the input sequence, which limits their use to
sequences considerably smaller than the size of a eukaryotic
chromosome. Recently, however, new systems based on
suffix trees, such as RepeatMatch (based on MUMmer [11])
and REPuter [12,13], have overcome this size limitation, at
least for biologically realistic input sizes. Both RepeatMatch
and REPuter are highly efficient computational tools that
can find all exact repeats in sequences as long as complete
eukaryotic chromosomes - 10-100 megabases (Mb). The
output of these systems, however, while accurately repre-
senting the long list of positions of exact repeats, does not
provide any overview or summary of the repetitive structure
of the sequence. The REPuter system includes a visualiza-
tion tool to generate repeat graphs, which are useful for
identifying the positions of repeats, but this does not
provide an overview of the exact and non-exact repeats in a
genome. Figure 1 shows an example of a repeat graph [12]
for a short DNA sequence.

Examining the output of REPuter and RepeatMatch for a
complete bacterial genome, it quickly becomes obvious that
many exact repeats are non-exact copies of one another.
Whether a genome is a few or hundreds of megabases in
length, the task of recognizing and describing how repeats
resemble one another at this scale is too complicated to
accomplish manually.

Here we describe a new system for the recognition of repeat
classes in genome sequences. This system, RepeatFinder, is
freely available from our website [14]. In contrast to
approaches that cluster together the results of BLAST
searches (for example, Z.H. Bao and S. Eddy, unpublished
data) our algorithm uses a comprehensive set of exact
repeats as the basis for constructing repeat classes. It relies
on the efficient suffix tree data structure for identification of
exact repeats, which permits rapid identification of repeat
classes even in sequences containing tens of millions of
nucleotides. The algorithm does not make any prior assump-
tions about the number or structure of the classes. At its core
is a merging procedure that produces the actual members of
each repeat class using merging criteria described below,
and it also builds a repeat map of the genome sequence.

We have applied this system to several complete microbial
genomes [15-21], to the complete Arabidopsis thaliana
genome [2], and to a large collection of rice bacterial artifi-
cial chromosome (BAC) end sequences [22,23]. The results
of this analysis are described below. The output of the
system gives a clear picture of all repeat classes identified in
a genome or a sequence collection. It provides straightfor-
ward access to the actual repeat sequences as a multi-fasta
file, simple statistical analyses of the results, and a proce-
dure for identifying each class’s most representative
element. We describe here the computational techniques

used in the system and demonstrate its use on several differ-
ent genome sequences.

Results and discussion

We begin by defining an exact repeat as a subsequence that
occurs in DNA sequence at least twice. A maximal repeat
(Figure 2a) is a repeat that cannot be extended in either
direction without incurring a mismatch. Repeats may have a
direction with respect to the underlying sequence (forward,
reverse) and with respect to each other (reverse comple-
ment). By allowing a set of editing operations - deletions,
insertion and mismatches - we extend the definition of an
exact repeat to an approximate repeat [13]. The set of
repeats chosen initially, from which the repeat classes will be
constructed, is called the initial repeat set.

In the initial repeat set, different repeats may be very close
together (Figure 2b) and may even overlap (Figure 2c¢). This
intricate picture can be simplified by constructing a more
general type of repeat: a ‘merging repeat’ will be defined as a
sequence that can be found in the whole genome sequence
not less than twice, where occurrences of the merging repeat
are permitted to be partial copies. Merging repeats, labeled
M,-M, in Figure 2, are created from initial repeat sequences
that are close together or overlapping. Merging repeats
maintain pointers to the initial repeats comprising them; for
example repeat M, (Figure 2b) has pointers to initial repeats
A, and B,. We shall also refer to these initial repeats as ‘sub-
repeats’ of M.

Using these properties, we can formulate a similarity condi-
tion between merging repeats. Two merging repeats M, and
M, are similar if they have at least one common initial
sequence, or there exists a sequence of merging repeats M,
N,, N,, ... N}, M, such that each pair of merging repeats in
the sequence shares at least one common subrepeat. The
minimum number k of merging repeats needed to establish
the similarity between M, and M, can be used as a similarity
measure. For example, the merging repeats M, and M, in
Figure 2b are similar with similarity measure k = 2 based on
the sequence M, M,, M, M,

One goal of our clustering algorithm is to distribute merging
repeats into classes according to this similarity condition so
that two rules are satisfied: first, elements in the same class
(homogeneity elements) are highly similar to each other;
and second, elements from different classes (separation ele-
ments) have no similarity to each other. The maximal simi-
larity k defined on all merging repeats in a class can be used
for assessing the overall similarity of the class members. (In
this paper the measure of similarity k is used only for the
definition of merging repeats).

In this study we use exact forward and reverse complement
repeats as initial repeats for clustering. The method does not
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>example.seq
GGCGGTCATTGCGGTTCTTTTGACTGTTGGATCGAACCTGAAGACCGTCTTCAGCTATGT
CGGTAGCAATCTCACGACGTAATTGGTTGCCCGGCCAGGCATAGGCGCGTTTACTACGTA
AAAACTCTTTTACAGATTAACAGTGAAACGACCAATCTTTGTTGTCATCGCACTCACCTG

1 180 (bp)

Figure |

Exgct repeats. An example sequence of 180 bp and graphical depiction of exact repeats, using minimal repeat length 6 bp. This
example shows forward and reverse complemented repeats. In the repeat graph [12], both of the horizontal lines correspond
to the example sequence, and diagonal lines connect the two occurrences of each repeat. REPuter includes a visualization
tool to provide similar graphics.

(a)
A, A,
| |
GAAAGCTACATGCTATATGTATTGTACCCCTGCTGACCCCGT. . TACTCTGTAGCTACATGCTATATGTATTGTAT
(b)
A1 Gap Gap Az
— =
:
B, B, .
8
M, M, M, M, g
(c)
A, Overlap A,
I
I
B, B,
M, M, M,
Figure 2

Definition of repeats. (a) Exact repeats, labeled as A, and A,. (b,c) Merging repeats. (b) Merging with gaps; (c) merging with
overlap. The nucleotide sequence is shown as a purpvle bar. ]rop, red, blue and yellow lines show the locations of the repeat
sequences. Pairs A, and A,, B, and B,, and C, and C, are initial repeat pairs. Bottom, green bars labeled M|, M,, M; and M,

indicate the location of merging repeats.
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require the use of exact initial repeats, but can be applied
easily to an initial set containing approximate repeats [3,13].

Algorithm description

Our algorithm is based on first identifying all exact repeats
in the input sequence, and then defining repeat classes by
merging and extending these short exact matches. An exact
repeat is represented by pair of coordinates (4,,4,) delimit-
ing its location in the genome sequence, and by the repeat
length I. We implemented an algorithm that uses either of
two suffix tree methods, RepeatMatch [11] or REPuter [12]
to determine all the exact repeats in a given sequence. (For
more on suffix trees see [24].) The computational time and
space requirements for both these systems are linear in the
size of the input sequences, an essential requirement for any
algorithm attempting to process whole eukaryotic genomes.
The subsequent clustering procedure merges neighboring
repeats and groups them into classes. The input to the
system can be either a single genome sequence or a set of
sequences. The clustering procedure consists of the follow-
ing steps, which are described in more detail below.

Step 1: Selection and pre-processing. The list of coordi-
nates of all exact repeats as output by RepeatMatch or
REPuter can be interpreted as a partition of the original
genome sequence. (The output of RepeatMatch and
REPuter are very similar. We used REPuter in the example
and in the subsequent repeat analyses of microbial
genomes; for the A. thaliana genome and and the rice BAC
end-sequence data we used RepeatMatch.) Each partition
point has a reference to the pair coordinates (4,,4,) and
the repeat length l. Each repeat corresponds to at least two
partition points. Some repeats can be found in the
sequence more than twice, and the corresponding partition
points can appear with different coordinates and different
lengths. To prepare the data for the merging procedure, we
sort the list of partition points in increasing order, and in
the case of duplicate first coordinates, in increasing order
of second coordinates. (The clustering algorithm is order-
independent; however, the linear nature of repeat data
allows us to use this pre-processing step to simplify the
clustering procedure without affecting the final clusters.)
In particular cases it is useful to filter the original repeat
data to remove certain types of repeats; for example,
simple one-base (homopolymeric) or two-base repeats.

Step 2: Merging procedure. In outline, this procedure works
by repeatedly merging together two exact repeats that either
overlap or that occur within a limited distance (a gap) of
each other. Specific values for the overlap and gap distance
can be specified for each genome sequence. Whether the
algorithm is merging repeats that overlap (Figure 2c¢), or
merging repeats separated by a gap (Figure 2b), the new
merging repeats will always have the property that signifi-
cant subsequences of the repeat appear at least twice in the
genome sequence.

At the time of merging procedure, we generate a repeat map
of the genome sequence. This map is based on a linked-list
data structure, which allows for rapid and simple modifica-
tions to the dynamically changing repeat data. Every
merging repeat in the map is linked by pointers to all the
merging repeats with which it shares exact repeats.

Step 3: Classification. This step defines the repeat classes.
Each merging repeat will be assigned to a specific class if its
list of references (that is, the repeats that were combined
into the merging repeat) contains at least one repeat that
already belongs to the class. If a merging repeat has refer-
ences that belong to multiple distinct classes, then those
classes are combined into one. If a merging repeat contains
no references to an existing class, then the merging repeat
forms a new class.

Step 4: BLAST searches and repeat class updates. The initial
classification is based on exact repeats. To merge together
similar but non-exact repeats, we use WU-BLAST [9,10] to
search all merging repeats against all others. The resulting
matches between the classes are used as input to an update
procedure which redistributes all merging repeats into new
classes. It is possible to skip this step if the initial repeat set
contains approximate rather than exact repeats.

Step I: Pre-processing

In this step, the output from REPuter or RepeatMatch is
used to partition the original genome sequence. For each
repeat starting at coordinates A, and A,, with length [, this
list will include both (4,A,,]) and (4,,4,,D). The list is then
sorted by first and by second coordinates. To illustrate the
method, we use the example shown in Figure 1. The table on
the left in Figure 3 shows all seven pairs of repeats, while the
right table shows the corresponding sorted partition points.

Step 2: Merging and repeat map generation

Using the list of partition points, we begin merging exact
repeats using the following criteria. Given two partition
points p, = (A, A,, 1) and p, = (B,, B,, lp) , where A, < B,,
we compute the distance between the non-overlapping
repeats as

d(pv pg) =max (o, B1 _A1 - lA +1).
Next, given a maximum gap size G > 0, the ‘merging with
gap’ protocol uses the rule that sequences corresponding to

p, and p, are merged if

d(p, p,) <G.
The ‘merging with overlap’ protocol only merges sequences
that overlap one another; that is they are at least partially

identical. We denote the overlap of two sequences as

o(p,,p,) =max (0,4, +1, — B,+1) forA, < B,



Repeats Partition points
type A1 A2 ,A A1 AZ IA
16 126 6
23 139 6
F 16 126 6 38 47 8
RC 23 139 6 47 38 8
RC 38 47 8 67 153 6
F 67 153 6 77 116 6
F 77 116 6 82 151 6
RC 82 151 6 116 77 6
RC 118 128 6 118 128 6
126 16 6
128 118 6
139 23 6
151 82 6
153 67 6
Figure 3

Pre-processing procedure. The table on the left shows repeat
pairs that were found by REPuter in the 180 bp example
sequence shown in Figure | using a minimum repeat length of
6 bp. Repeats are represented by type: forward (F) or reverse
complement (RC), first coordinates (A, A,) and length (/,).
Reverse complement repeats with A;= A, are omitted. The
table on the right contains a list of partition points. Arrows
show the correspondence between the repeat (67,153,6) and
the two partition points (67,153,6) and (153,67,6).

Then the criterion for ‘merging with overlap’ is as follows:
given a minimum overlap proportion op, where 0 <op <1,
repeat points (4,, A,, [,) and (B,, B,, [;) are merged if at least
one of the four repeats has overlap satisfying

0 (p,p,) > op min (I, ly).

The parameter op is interpreted as a fraction of the shorter
of the two repeats. Thus for op = 0.75, we will merge two
overlapped sequences if the length of their overlap is at least
75% of the length of the shorter sequence.

Using either merging procedure, if two sequences are merged
then the new sequence will be defined as a merging repeat
with starting position M = A, and with length [, = max (4, +
l,, B, + lp) - A,. The merging procedure is not permitted to
merge pairs of partition points of the form (B,, B,, [) and (B,,
B,, l). This condition avoids merging of tandem repeats and
avoids repetitiveness within the merging repeats.

On the left side of Figure 4 we illustrate the merging proce-
dure using a merging with G = 1. Dark gray rectangles mark
the start coordinates of merging repeats. The extent of each
merging repeat is shown by dividing sets of repeats using
horizontal lines.

This procedure, by updating and creating new references,
leads to the repeat map shown on the right of Figure 4.
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These references define the correspondences between all
merging repeats. Each merging repeat maintains references
to the other merging repeats with which it shares exact
repeats; each exact repeat is assigned to the first merging
repeat in which it appears. In our example, the merging
repeat starting in coordinate 77 gets a reference to itself only,
because its exact repeats have no previous references. The
next repeat, starting in position 116, gets a reference to itself
and to its mate the merging repeat 77. A data structure
stores with each merging repeat its start coordinate, its
length ({;,), the number of exact repeats it includes (n,,), and
a list of references to itself and to other repeats (R,, R, R,).

Step 3: Classification

Given the repeat map, we can begin to define classes by
noting that if a merging repeat has at least one reference in
common with another, then they belong to the same class.
Figure 5 illustrates one step in this procedure. The merging
repeat (M,l,,) = (126,8) has two common references in two
different classes, class 1 and class 5. These classes are then
combined together into a new class 1, which contains all ref-
erences from both the original classes.

Step 4: BLAST searches and further merging

For this step, the most time-consuming part of the algo-
rithm, we use the underlying sequences of the merging
repeats, and run a BLAST search of all sequences against all
others. Classes are merged if any of their underlying
sequences have a BLAST E-value less then a user-specified

Merging procedure
A Ay Iy
Repeat map
16| 126 6
23 | 139 6
e M Iy, ny, Ry R, R;
47 | 38 8
67 | 153 6
A g A R SR
82 451 6
38 8 1 38
_16 | 7776 47 8 1 38 47
118 128 6 67 6 1 67
_126 | 16 6 77 1 2 77
128 118 6 116 8 2 77 116
139 | 23 6 126 8 2 16 116 126
151 | 82 6 139 6 1 23 139
153 67 6 151 8 2 67 77 151
Figure 4

Merging procedure. The start coordinates of merging
repeats are shown in dark gray. Horizontal lines divide sets
of exact repeats that were merged into a single merging
repeat. The arrow shows the connection between a group
of two short exact repeats and the corresponding | | bp
merging repeat starting at position 77.
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Repeat map Classification
M Iy, ny Ry R, R;
16 6 1 16
23 6 1 23 Class1 16 Class1 16 77 116 126
8 8 1 38 Class2 23 Class2 23
g’; g 1 g? 4 Class 3 38 47 Class 3 38 47
77 11 2 77 Class 4 67 Class 4 67
16 8 2 77 116 Class 5 77 116
126 8 2 16 116 126
139 6 1 23 139
151 8 2 67 77 151

Final classification

Class1 16 67 77 116 126 151
Class2 23 139
Class 3 38 47

Figure 5

Or%e step of the classification procedure. The gray rectangle in the repeat map table shows the merging repeat with its length,
the number of exact repeats it includes, and references to the repeats it contains. The highlighted repeat will be added to
existing classes. It contains references to class | (16) and class 5 (1 16), marked by gray in the first classification table. On the
next classification step, these two classes are merged and the rest of their references are added to the new class |. Arrows

show the directions of class merging.

threshold when compared to any sequence in another class.
If a class appears in multiple similarity pairs, all these
similar classes are merged with the original class. For the
example in Figure 4, BLAST searches do not reveal any new
similarity pairs; thus the classification from the figure is
identical to the final classification (Table 1).

Repeat analysis of microbial genomes

We used our repeat clustering algorithm to analyze several
complete microbial genomes. Table 2 summarizes the repeat
analysis for the Neisseria meningitidis genome [20] using
two different clustering criteria. It illustrates how increasing
the exact repeat size in the initial step leads to fewer merging
repeats and fewer classes. It also shows how reducing the
size of the gap and increasing the required overlap increases
the number of repeat classes, as would be expected.

For a more comprehensive repeat analysis, we chose seven
different microbial genomes, using 25 base pairs (bp) as the
minimal exact repeat length and allowing less than a 25 bp
gap for the merging procedure. Table 3 shows the results for
these genomes. It presents the number of merging repeats,
the number of repeat classes, the longest single merging
repeat, and the number of classes containing more than two
members. As shown here, these latter classes comprise only
10-25% of all repeat classes, indicating that most repeat
types are simple duplications. Among these duplication, the
vast majority occur in tandem, although this is not shown in
Table 3. The picture given here shows how repeat analysis
can quickly provide an overall picture of how repetitive a

genome is; in addition, the analysis extracts the repeats
themselves for further analysis.

Defining the prototype for a repeat class

Small microbial genomes have relatively few types of repeats,
and relatively few copies of each type. In contrast, our studies
of longer eukaryotic genome sequences have uncovered tens
of thousands of repeat classes and hundreds of thousands of
merging repeats. In order to be able to process this data effi-
ciently - in particular, in order to run the procedure where all
classes are compared against each other using BLAST - we

Table |

Final classification

Class Coordinate  Length Copies Sequence

| 16 6 | TCTTTT

| 67 6 | CAATCT

| 77 I 2 ACGTAATTGGT
| 16 8 2 ACGTAAAA
| 126 8 2 TCTTTTAC

| 151 8 2 ACCAATCT
2 23 6 | ACTGTT

2 139 6 | AACAGT

3 38 8 | CTGAAGAC
3 47 8 | GTCTTCAG




Table 2
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Sensitivity of the clustering method to different merging parameters

Minimal exact repeat 25 bp

Minimal exact repeat 50 bp

G (bp) op (%) Number of merging repeats ~ Number of classes Number of merging repeats ~ Number of classes
50 1031 122 655 63
25 1155 162 741 77
5 1394 218 843 92
50 2328 357 1305 165
95 3748 510 1892 234
100 4564 550 2322 242

The length of the Neisseria meningitidis genome is 2,272,351 bp [20].

Table 3

Repeat structure of microbial genomes

Genome Reference Length (bp) Number of The longest merging ~ Number of classes ~ Number of classes
merging repeats repeat (bp) with more than
two elements
Treponema pallidum [16] 1,138,006 87 3283 31 4
Chlamydia pneumoniae [18] 1,229,853 74 2519 25 3
Methanococaus jannaschii [15] 1,664,976 557 4929 113 23
Helicobacter pylori [19] 1,667,867 297 2317 95 21
Thermotoga maritima [17] 1,860,725 218 1697 43 8
Neisseria meningitidis [20] 2,272,351 1155 9900 162 38
Caulobacter crescentus [21] 4016917 1114 4206 216 50

developed a procedure to define the most representative
element for each class, which we call its prototype.

Referring to the repeat map shown in Figure 5, we use the
length of the merging repeat () and the number of exact
repeats (n,,) to defined the desirable properties for the proto-
type. The different merging protocols affect the properties of
the prototype. Thus, in the ‘merging with gap’ procedure, the
merging repeats with the longest lengths and with the great-
est number of subrepeats should be the best candidates to
represent the class. In this case, many members will consist
of simple subsequences of the prototype. When we use the
‘merging with overlap’ procedure, we also look for the great-
est number of subrepeats, but the length of the most repre-
sentative repeat should be closer to the shortest repeat in the
class. In this case the representative element will tend to
match across most of its length to every member of the class.

Using these considerations, we can construct the objective
function for both cases. For each class, given the merging

repeat length [ (I,,) and number of subrepeats n (n,,), the
maximum and the minimum repeat lengths in the class (I,
and [ ;,), and the maximum and the minimum number of
subrepeats in the class (n,,,, and n;, ), we define the func-

tion F(,n) for each merging repeat of the class as

max max
F(ln)= +

max_ ‘min max~ "‘min

for ‘merging with overlaps’.
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This non-negative function is a summary of the variance in
the length and number of subrepeats from the desirable
values for the class prototype. Then we solve the optimiza-
tion problem of minimizing function F([,n):

find (I,n) corresponding to an element in the single repeat
class: min F(I,n).

If we get several elements that minimize this function, we
select the one with the maximal number of subrepeats.
Thus in our example (Figures 1,3-5) the prototype for class 1
is the longest repeat starting in position 77, with [ = 11 and
n = 2. Likewise, the prototype for class 2 is the repeat start-
ing at position 23, and for class 3 it is the repeat starting at
position 38. We used this procedure in our studies of the
genome sequences of A. thaliana [2] and rice BAC end
sequences [22,23].

Repeat structure of the Arabidopsis genome

The 125 Mb A. thaliana genome consists of five chromo-
somes ranging from 18 Mb to 30 Mb in length. We applied
the suffix tree algorithm for finding exact repeats to each of
these sequences separately, and than used our clustering
method to determine the repetitive structure of each chro-
mosome. We found from 100,000 to 400,000 pairs of exact
repeats in each chromosome using a minimum length of 25
bp (after filtering out simple repeat sequences). These
repeats in total represent approximately 10% of the chromo-
some sequences. To group the repeats into classes the gap-
merging strategy was used, with a maximum gap size of less
than 25 bp. The algorithm finds some 5,000-7,000 repeat
classes per chromosome, but only 20% of these contain more
than two elements. Arabidopsis is known to contain exten-
sive gene duplication and strong evidence of a whole-
genome duplication [2]; thus it is not surprising to observe
such a preponderance of repeats with just two members. We
defined the prototype element for each class using the opti-
mization procedure described above, combined all the proto-
types from five chromosomes in one database, and
generated a final classification of the whole genome by clus-
tering the BLAST search results of all prototypes against all.
This resulted in over 5,000 classes with three or more ele-
ments. Table 4 contains a summary of the repeat structure
for the entire A. thaliana genome.

To find out more about the composition of the Arabidopsis
repeats, each sequence was searched against AtRepBase

Table 4

[25] and the Arabidopsis gene database [26] (using a
maximum BLAST E-value of 0.01 and at least 100% identity
for Arabidopsis genes and at least 95% identity to AtRep-
Base sequences). Of 105,434 repeat sequences that fall into
27,061 separate repeat classes, 2,124 sequences matched an
annotated repeat sequence in AtRepBase, and 25,149
sequences matched a segment of an Arabidopsis gene.
Comparing both sets of matches, only 417 of the repeat
sequences were found to match both a gene segment and an
annotated repeat sequence. The large number of repeats
that match gene segments reflects the prevalence of seg-
mental chromosomal duplications and tandem gene dupli-
cations in Arabidopsis. Due to the greedy ‘merging with
gap’ method used to build the repeat classes, relatively few
of the repeat classes contained an abundance of the repeat
sequences; the largest repeat class contained 30,975
sequences of which 6,505 matched gene segments and 1,723
matched annotated repeats.

To further analyze the composition of the repeat classes, a
prototype repeat sequence was chosen to represent each
repeat class containing at least five members, and the top
database matches were identified (Table 5). Of the 1,454 pro-
totype repeat sequences examined, approximately half (755)
matched gene segments and 58 matched annotated repeats.
The genes matched by the prototype repeat sequences
include known members of large Arabidopsis gene families
including a cytochrome P450, a receptor kinase, a disease-
resistance protein and several transposon open reading
frames. In addition, there were many matches to hypotheti-
cal proteins, the validity of which remains to be determined.
The biological relevance of the remaining repeat classes
remains unclear at present.

Rice repeat database

Yuan et al. [27] recently reported on the construction of a
rice repeat database that was generated by searching all
available rice sequences for minisatellite sequences, mobile
elements, rDNA, centromeric repeat sequences and telom-
eric repeat sequences. This database includes 215
sequences. We attempted to use the repeat finding system
described here to enlarge this set, using as input the large
collection of sequences from the Clemson University rice
BAC end database [23].

Unlike either Arabidopsis or the microbial genomes, where
a single genome sequence or a few large chromosomes were

Summary of repeat analysis of Arabidopsis genome and rice BAC end sequences

Class size 3 4 5 6-10 11-50 51-600 30,975 128,570
Number of classes in Arabidopsis 2,792 970 420 662 336 32 | 0
Number of classes in rice data 3,532 1,606 875 1,509 561 34 0 |
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Table 5

Prototype repeat sequences ( Arabidopsis thaliana genome) that matched genes or annotated AtRepBase repeats

Class number Class size Genes Repeats

| 30,975 Hypothetical protein ATRO008! minisatellite | from 63767 to 63826

12639 202 AC002534 ATR0058

56 164 Hypothetical protein

42 135 ATRO0087

284 135 Pseudogene

6 133 Hypothetical protein

20 Il Putative O-methyltransferase |

54 1 Putative reverse transcriptase

62 107 Hypothetical protein

95 85 Hypothetical protein

1389 85 Putative receptor kinase

269 8l Putative receptor kinase

58 78 Putative retroelement pol polyprotein

236 71 Putative disease resistance protein

18068 67 Putative Ser/Thr kinase

5 64 Pseudogene

29 64 Hypothetical protein

400 57 Hypothetical protein

12310 56 Hypothetical protein U65470 ATR0043

187 55 Hypothetical protein

38 50 Putative NBS/LRR disease resistance protein

47 48 Putative phenylalanine ammonia-lyase

104 46 M65137 ATR0025

345 45 Pseudogene

12594 45 Putative reverse transcriptase

735 45 Hypothetical protein

240 43 Putative disease-resistance protein

167 42 Pseudogene

60 41 Hypothetical protein a
211 41 o
8l 39 Hypothetical protein §
124 38 Hypothetical protein 5
411 38 Putative disease-resistance protein 9
324 37 X93607 ATR0046 5—
170 37 ATRO0084 repeat 5 from 102144 to 105991

421 37 AF024504 ATR0056

293 36 Hypothetical protein repeatO| ATR0090

357 35 Pseudogene

426 34 CHP-rich zinc finger protein-like

22466 32 Hypothetical protein

64 32 Hypothetical protein

242 32 Hypothetical protein

249 31 Putative cytochrome P450

18597 31 Putative transposon protein

256 31 Putative serine carboxypeptidase

202 30 Hypothetical protein

290 30 Pseudogene

18166 29 Putative CHP-rich zinc finger protein

12400 29 Hypothetical protein

297 29 Mutator-like transposase ATRO0089
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being processed, in this case we had 101,562 BAC end
sequences with an average length of approximately 400-
700 bp. We therefore developed a special pre-processing
procedure which generates a single sequence (approxi-
mately 42 Mb long) from all the BAC ends. Each original
sequence is represented by its coordinate in the new
sequence. This procedure permits the algorithm to work
with hundreds of thousands of different sequences simulta-
neously. The system found 5,208,206 exact repeat pairs
with lengths from 25 bp to 728 bp, where the latter repre-
sents an entire BAC end that was repeated exactly. The
maximum length of each repeat was bounded by the length
of the BAC end sequence in which it was found. This length
restriction was added to the merging procedure to avoid
artificially long repeats that might mistakenly span more
than one BAC end sequence. The pre-clustering procedure
also includes filtering of the exact repeats data to remove
simple-sequence repeats, which were determined to com-
prise over 40% of exact repeats. We merged the filtered
exact repeats data, requiring an overlap of 95%. This
resulted in 48,768 repeat classes, of which only 8,118
include more than two elements. Table 4 contains a
summary of these repeat classes. A searchable rice repeat
database, based on the prototypes of these classes, is avail-
able online at [28].

To test this new repeat database, we compared it to the set
of annotated repeats based on known, expertly curated
repeats [27]. There were four general groups in this set:
telomere/centromere repeats, transposon/transposon-like
repeats, rDNA, and all the rest [27]. We used BLAST to
search annotated repeats against the rice repeat database,
using an E-value cutoff of 108, Classification of the BLAST
hits shows that the annotated repeats from the four dis-
tinct groups always fall into separate classes in the rice
repeat database; in other words, the new database divides
the previous repeat classes into a finer-grained set of
repeats, but it does not merge any of the four known
groups together.

Performance

Because of the use of the efficient suffix tree procedures,
the system runs very fast, with the all-versus-all BLAST
search consuming approximately 80% of the computation
time. The running time of the exact repeat finder is about
10-15% of the total, with the other processes - merging,
clustering and post-BLAST updating - using a relatively
minor proportion of overall computation time. The
running time depends on both the sequence length and the
number of repeats; for example, small microbial genomes
take just 3-15 minutes, whereas the highly repetitive rice
repeat database took about two days to process. The
memory needed for computation is dominated by the
requirements of the suffix tree used for the initial repeats
computation [11-13]; this can grow to many gigabytes for
large eukaryotic chromosomes.

Conclusions

We describe a new system for rapid identification of all
repeats in genome sequences and assignment of these
repeats to similarity classes. The system has been used to
analyze the repeat structure of several complete microbial
genomes, and the much larger genome of the model plant A.
thaliana. We also used it to create a new rice repeat data-
base, based on an analysis of a large BAC end sequence data-
base. This new computational tool should prove helpful in
the analysis of repeat structure for both complete and partial
genome sequences.
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