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This article describes a computational method to construct gene models by using evidence generated from a diverse
set of sources, including those typical of a genome annotation pipeline. The program, called Combiner, takes as
input a genomic sequence and the locations of gene predictions from ab initio gene finders, protein sequence
alignments, expressed sequence tag and cDNA alignments, splice site predictions, and other evidence. Three different
algorithms for combining evidence in the Combiner were implemented and tested on 1783 confirmed genes in
Arabidopsis thaliana. Our results show that combining gene prediction evidence consistently outperforms even the best
individual gene finder and, in some cases, can produce dramatic improvements in sensitivity and specificity.

Computational identification of complete gene models in eu-
karyote genomes remains a challenging task (Zhang 2002). In the
Arabidopsis genome project (The Arabidopsis Genome Initiative
2000), human experts integrated the output of different gene
prediction programs with sequence homology data from searches
of protein and transcript databases to construct the published
gene models. Difficulties in creating accurate annotation arise for
a variety of reasons. Sometimes the evidence for a gene is weak,
consisting of just one gene prediction but no sequence homol-
ogy, or just a single expressed sequence tag (EST) match. In other
cases, the evidence is plentiful but contradictory: Different gene
finders and protein sequence alignments may indicate many
overlapping candidate genes, and more than one of these models
may in fact be correct. Thus, the process of constructing final
gene predictions, even with a human curator in the loop, is time-
consuming and fraught with opportunities for errors. For these
reasons, we have developed a computational method that evalu-
ates much of the same information human annotators use, as a
means of creating gene models that are both more accurate and
more consistent than can be derived from any single computa-
tional gene prediction algorithm.

This article describes the Combiner program, a statistical
algorithm that uses the output from other annotation software to
improve the accuracy on predicted genes while maintaining a
good balance between sensitivity (the number of true genes de-
tected) and specificity (the number of gene predictions that are
correct). Other efforts to combine gene model evidence have pri-
marily focused on integrating the output from gene prediction
programs (Murakami and Takagi 1998; Pavlovic et al. 2002; Rogic
et al. 2002). The Combiner algorithm integrates multiple gene
prediction programs plus much of the evidence available in a
typical annotation pipeline, including evidence from proteins,
ESTs, cDNAs, and splice site predictions. Other approaches to
incorporating multiple evidence types can be found in the Eu-
Gène (Schiex et al. 2001) and GAZE (Howe et al. 2002) systems.

We tested three algorithms for use in the Combiner. The
first algorithm is a simple Linear Combiner (LC1) that uses a
voting function to combine multiple gene prediction programs.
Each gene finder is given equal weight, that is, one vote, in LC1.
The algorithm first identifies all possible disjoint intervals sepa-

rated by signals such as splice sites or start codons, similar to
signal-based ab initio gene prediction (Salzberg et al. 1998). A
dynamic programming algorithm constructs gene models from
candidate signals predicted by any of the gene prediction pro-
grams, systematically enumerating all possible combinations of
signals (start, stop, donor, and acceptor sites). The sequence in-
tervals between these signals are voted on by the gene finders.
Each gene finder must vote for either coding or noncoding, and
the highest-scoring combination of intervals is pieced together to
form a gene model. The second Combiner (LC2) uses a similar
dynamic programming algorithm to LC1, but with two signifi-
cant enhancements. First, it adds sequence alignments (both
DNA and protein) and splice site prediction programs to the in-
puts. Second, it uses different weights for the different forms of
evidence.

Aligning genomic sequence to a transcript or protein data-
base produces matches with widely varying amounts of similar-
ity. Clearly, the similarity of each alignment should be a factor in
scoring the quality of a predicted exon. However, the degree of
similarity of a match does not directly translate into the likeli-
hood that a region encodes a protein, and the alignment algo-
rithms themselves (e.g., BLAST; Altschul et al. 1990) do not pro-
duce such likelihoods. Further complicating matters, LC2 uses
splice site predictions to indicate potential exon boundary sig-
nals, but because it scores intervals (not points between inter-
vals), it does not include the splice site prediction in the linear
weighting function. To address these limitations, we developed a
statistical scoring method that uses decision trees (in particular,
the randomized oblique decision trees of Murthy et al. 1994) to
correlate evidence patterns with candidate gene models. This Sta-
tistical Combiner (SC) uses the confidence scores output by the
gene finders themselves (when available), which were also used
by Rogic et al. (2002) to combine outputs from two gene finders.
Instead of a simple linear function combining all the inputs, SC
builds a nonlinear model based on a decision tree. A description
of each approach is given in the Methods section.

RESULTS
The three Combiners were tested on a data set of 1783 cDNA
confirmed genes in Arabidopsis thaliana. These reference genes
are based on full-length cDNA sequences that have been aligned
to the genome and subsequently examined and defined by hu-
man annotators (Haas et al. 2002). This carefully curated data set
provides a large and reliable source for evaluating the accuracy of
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our methods. The results are divided into two sets based on the
type of evidence used. The first set consists of gene prediction
programs trained prior to the availability of the test genes and
includes GlimmerM (Pertea and Salzberg 2002), GeneMark.hmm
(Lukashin and Bordovsky 1998), Genscan+ (Burge and Karlin,
1997), and GeneSplicer (Pertea et al. 2001). The second test set
includes recent TwinScan (Flicek et al. 2003) predictions avail-
able at http://genes.cs.wustl.edu/predictions/Arabidopsis/
contig�04�23�03 and a newer version of GlimmerM that includes
improved modules to better detect translation start sites and
polyadenylation sites. In both test sets, the Combiners using ho-
mology data take input from alignments between the genomic
DNA and protein sequences from a non-redundant amino acid
database aligned by using the dps and nap programs (Huang et al.
1997), as well as gene transcripts (including both EST and cDNA
sequences) from the TIGR gene index database (Quackenbush et
al. 2001) aligned using dds and gap (Huang et al. 1997). The
alignment data was filtered to remove proteins, ESTs, and cDNAs
that are included in the 1783 genes, which might bias the Com-
biner’s results. We removed all sequences that align with 100%
identity regardless of the source of these sequences.

All programs were run on 515 bacterial artificial chromo-
somes (BACs) with lengths of ∼100 kbp and collectively span
roughly one third of the Arabidopsis genome. The three Combin-
ers were run on each BAC, using the evidence from the other
software programs as input, and the predictions were compared
with the locations on the BAC corresponding to the 1783 cDNA
confirmed genes. The test genes specify complete coding regions
from the start codon to the stop codon (including possibly in-
trons) and can occur on any portion of the BAC sequence.

Our primary purpose in these tests is to take an existing set
of predictions from gene finders along with the output from
other gene evidence and see if we can combine their output to
produce a more accurate set of gene models. Because our tests
genes are already known from cDNA evidence, the tests may
favor the Combiners using sequence alignment evidence, par-
ticularly if these genes are more frequently expressed. Therefore,
in addition to considering the results of combing only gene find-
ers in LC1, we also report results from the SC using only the gene
finders and splice site prediction program as input.

Test Set 1
Our initial test used three single-organism gene finders as inputs:
Genscan, GeneMark.hmm, and GlimmerM. Figure 1 shows the
overlap among correctly predicted gene models from each of the
gene finders, in which “correct” is defined to mean that all cod-
ing exons were in perfect agreement with the true gene. Only 178
(10%) of the genes were correctly predicted by all three methods.

As the figure makes clear, each of the three gene finders has a set
of genes for which it is the only correct method. The most accu-
rate single program, GeneMark.hmm, predicts 799 of 1783 genes
(45%), but if we could produce an oracle that always chose the
best model from the three gene finders, then it would make 1205
(68%) correct predictions. Thus, if the Combiner can cleverly
pick a gene model from among the three gene prediction pro-
grams, it should be able to improve on the performance of all
three.

Results for the four Combiners—LC1 and SC-g using only
gene finders as input and LC2 and SC using gene finders plus
homology data—are listed in Table 1. Because both SC and SC-g
require a training set, we trained them by using a separate set of
380 genes (none included in the 1783 test set) from 120 BACs. All
genes in both training and test sets were confirmed by full-length
cDNA sequences that had been mapped to the genome (Haas et
al. 2002), currently the gold standard for determining the cor-
rectness of a gene.

For this initial test, the SC gets 66% of the test gene models
exactly correct in contrast to the best individual gene finder,

Table 1. Performance of the Gene Predictors on 1783 Genes

CG MG CE ME WE SN

SC 1179 (66%) 31 (2%) 6625 (88%) 311 (4%) 27 97%
SC-g 1114 (63%) 12 (1%) 6580 (88%) 220 (3%) 71 98%
LC2 1078 (61%) 19 (1%) 6468 (86%) 298 (4%) 44 98%
LC1 967 (54%) 21 (1%) 6323 (84%) 300 (4%) 57 97%
GM 799 (45%) 31 (2%) 5947 (79%) 363 (5%) 95 96%
GS 650 (37%) 43 (2%) 5680 (75%) 722 (10%) 41 92%
GA 557 (31%) 39 (2%) 4610 (61%) 1183 (16%) 415 85%

SC indicates Statistical Combiner; SC-g, SC combining gene prediction programs only; LC2, Linear Combiner using sequence alignments; LC1,
Linear Combiner using gene prediction programs only; GA, GlimmerM; GM, GeneMark.hmm; and GS, Genscan+. The columns are number of whole
genes correctly predicted (CG), number of genes completely missed (MG), correctly predicted exons out of the 7510 total (CE), number of exons
completely missed (ME), predicted exons overlapping a gene region but do not overlap a true exon (WE), and percentage of protein coding
nucleotides correctly detected (SN).

Figure 1 The number of correct and incorrect (number in parentheses)
whole gene model predictions shared among the three prediction pro-
grams: GlimmerM (GA), Genscan+ (GS), and GeneMark.hmm (GM) from
a test set of 1783 genes. Incorrect gene refers to cases in which all coding
exons in the gene are in perfect agreement among the gene finders but
not with the true gene.
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GeneMark.hmm, which gets 45% correct. (Here “exactly correct”
means that the entire coding region is correctly predicted, from
start to stop, with all intron boundaries correctly identified.) LC1
and LC2 also improved over the individual gene finders, with
54% and 61% correct, respectively. SC-g gets 2% more test genes
correct (63%) than does LC2. SC and SC-g identified 88% of the
exons correctly (both the 5� and 3� ends were correct), whereas
the individual gene finders’ accuracies ranged from 61%–79%.
LC1 and LC2, at 84% and 86%, showed intermediate levels of
performance gain. A missed gene (exon) occurs when no pre-
dicted exon overlaps the gene’s exons (exon) by one base or
more. LC1, LC2, and SCmissed small and roughly equal numbers
of exons (4% of the 7510 total), but SC-g missed 3% of the exons
and the LCs and SC-g missed fewer gene models, only 1%, com-
pared with 2% for SC and for the best individual gene finder. Of
the 31 whole genes missed by SC, 19 are single exon genes, in-
dicating a possible area for improvement. At the nucleotide level,
which measures the percentage of coding bases in the test genes
correctly labeled as coding, all four Combiners achieve 97%–98%
accuracy. And the number of “wrong exons,” predicted exons
that do not overlap a true exon at all, is substantially smaller for
SC, with 27 wrong exons, than for any of the gene finders, which
had from 41 to 415 wrong exons. The lower overall correct gene
count for GlimmerM is due to a tendency to insert short exons
(the average exon length is 54 nucleotides).

An additional measure of Combiner performance is its ac-
curacy relative to the agreement among the gene finders. If for
example, the Combiner gene model is only correct when it agrees
with at least two of the ab initio gene finders, then a simple
majority-vote rule might work just as well. Results comparing the
performance among all four Combiners with respect to the gene
prediction programs are summarized in Table 2. The table shows
results divided according to whether each Combiner agreed with
zero, one, two, or three gene finders; for example, SC agreed with
two of the gene finders on 527 genes, and those predictions were
correct for 440 (84%) of them. The Combiners get 97% of the
genes correct when all three gene finders agree; these are presum-
ably “easy” genes for automated prediction. (Note that when all
three gene finders agree, the Combiners never disagreed with the

consensus. Interestingly, there are five genes for which all gene
finders agree but for which the reference cDNA alignment indi-
cates a different gene model.) But even when they agree with just
one of the gene finders and disagree with the other two, the
Combiners get 52% (LC1) to 65% (SC) of the predictions correct.
And all four Combiners correctly predict some genes that are
missed by all three gene prediction programs. This is possible
because the Combiners are able to piece together parts of a gene
model from the different inputs to make a new model. As Table
2 shows, LC2, LC1, and SC-g are competitive with SC when at
least two gene prediction programs agree with one another, but
SC has a distinct advantage when the one or no gene finders
make a correct prediction.

Test Set 2
We constructed a second set of comparisons by adding the Twin-
Scan algorithm, which, unlike any of the other gene finders, uses
sequence homology with a related species to inform its gene
finding. By using alignments to Brassica oleracea, TwinScan is
able to achieve substantial improvements over the best of the
gene finders in our original set. Our hypothesis was that the
Combiner should improve still further, using the better predic-
tions from TwinScan to boost its performance over the first
round of tests. For this test, we used up to five gene finders as
inputs: the three from the first test, TwinScan, and a newer ver-
sion of GlimmerM. Similar to what is shown in the Venn diagram
in Figure 1, all five prediction programs predict a different set of
correct gene models. Table 3 lists the number of gene models
each gene prediction program exclusively identified correctly. In
total, 1496 of the 1783 gene models are identified correctly by at
least one of the five gene prediction programs. Therefore, each
prediction source provides potentially useful information. Be-
cause both LC1 and LC2 combine each evidence source by using
a linear sum of weights, we expected that they might have diffi-
culty combining the outputs from the highly correlated versions
of GlimmerM. Results are summarized in Table 4. Again, we in-
clude a version of SC, which combines only the gene finders and
splice prediction program.

TwinScan is the most accurate gene prediction program,
with performance that compares favorably to the best Combiner
results from the first experiment (Table 1). TwinScan predicts
67% of the gene models and 87% of the exons correctly, com-
pletely missing just 17 genes. With the advantage gained from
having TwinScan as input, the SC jumps to 78% (1385) correct
gene models and 93% correct exons. The SC using only gene
finders (SC-5g) also improves, getting 75% of the gene models
correct and 92% correct exons. Both LC1 and LC2 improve by
using TwinScan, with 68% and 73% of the gene models correct,
respectively.

When one of the gene finders is clearly superior to the oth-
ers, the Combiner should give it a higher weight. This happens
automatically in the training of SC, but not in LC1 or LC2. Both
LC1 and LC2 would likely improve substantially here if the
weights were better tuned to reflect the relative performance

Table 2. Breakdown of Combiner Predictions When Matching
Exactly Three, Two, One or Zero Gene Prediction Programs

Combiner
No. of

GP CG WG CG/CG + WG (%)

SC 3 178 5 97
SC-g 3 178 5 97
LC2 3 178 5 97
LC1 3 178 5 97
SC 2 440 87 84
SC-g 2 417 70 86
LC2 2 418 76 83
LC1 2 401 94 81
SC 1 419 229 65
SC-g 1 395 308 56
LC2 1 363 263 58
LC1 1 307 286 52
SC 0 142 253 36
SC-g 0 124 282 31
LC2 0 119 348 26
LC1 0 81 412 16

The first column (combiner) refers to the four Combiners. The second
column refers to the number of matching gene prediction programs.
The third column and fourth columns count the number of times the
Combiner prediction is correct (CG) and not entirely correct (WG).
The fifth column is the percentage of correct predictions.

Table 3. The Number of Gene Models Each Gene Finder
Exclusively Predicts Correctly in Test Set 2

Program Correct genes

TwinScan 206
GeneMark.hmm 59
GlimmerM 41
GlimmerM2 39
Genscan+ 31
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among the gene finders. Unlike LC1 and LC2, SC performance
improves further when adding one or two more gene prediction
programs on top of the first three. Table 4 shows these results as
SC-3 for three gene finders and SC-5 for all five.

DISCUSSION
Two of the leading resources for annotation of the human ge-
nome are Ensembl and Nation Center for Biotechnology Infor-
mation (NCBI), in which each applies a different collection of
computational tools to construct their gene predictions (Birney
et al. 2002). NCBI aligns all known genes from the Reference
Sequence database and from GenBank mRNA sequences to the
genomic sequence by using MegaBLAST (Zhang et al. 2000), re-
taining matches with �95% identity and covering 50% of the
putative transcript (http://www.ncbi.nlm.nih.gov/genome/
guide/build.html#gene). Alternate overlapping models are
merged into a single gene. Additional genes are reported based on
GenomeScan (Yeh et al. 2001) predictions, excluding those that
overlap the set of genes identified by alignment. Ensembl takes a
similar approach, first aligning known proteins to the genome
and using GeneWise (Birney and Durbin 1997) to determine the
gene models. Additional predictions come from exons predicted

by Genscan, filtered according to whether they correspond to
BLAST (Altschul et al. 1990) matches to a protein database. En-
sembl also incorporates EST alignments to refine the predicted
gene models. Each gene reported from the automated pipeline is
supported by sequence alignment evidence, but it is not clear
how many of these regions correctly identify each gene model
boundary: translation starts, splice sites, and stop sites. Neither of
these human genome pipelines incorporate an explicit method
for combining multiple gene finders; because our Combiner is
open source, it should be easy for these and other annotation
providers to include it in their pipelines.

For many organisms, multiple gene finding tools success-
fully identify protein coding regions in the genome. Our results
show that, even in cases in which one program is clearly more
accurate, other prediction tools provide useful information, cor-
rectly finding some exons and genes that the other programs
miss. The difficulty lies in checking each protein coding region to
decide when and how to use each piece of evidence. LC2 does
surprisingly well considering it only requires that the user assign
a weight to each evidence source (see Methods). SC, however,
provides a more robust model for incorporating different types of
evidence. It uses training data to build its own nonlinear model
for combining the evidence. The SC also provides a way to make

use of multiple overlapping gene models
from a single prediction program, for ex-
ample, those produced by different pa-
rameter settings. This allows the Com-
biner to decide which alternative model
is best supported by sequence alignment
evidence, rather than relying on the
single best prediction.

An important element of the Com-
biner approach is to treat each source
of evidence as a black box, which
enables the use of gene model evidence
from any source, as long as the pre-
dictions are provided as sequence
coordinates. Separating the Combiner
from the evidence software allows us to
apply the Combiner to each genome se-
quencing project by using sequence
analysis software specific for that organ-
ism. The success of the Combiner de-
pends on the accuracy of the underlying
evidence and continued improvements
in gene prediction algorithms, as illus-
trated by the TwinScan results in this
study, should improve future Combiner
results.

Figure 2 Partitioned output from three evidence types: splice predictions, gene predictions, and
sequence alignments. The five sources of evidence (listed in order from top to bottom) are output from
a splice prediction program (SP); a gene prediction program (GP1) with exon confidence scores 0.9
and 0.89; a gene prediction program (GP2) with no confidence scores; 89% and 45% identity align-
ments from a protein database, which make up a single evidence source; and 32% and 20% identity
alignments from an EST database. The genome sequence is divided into intervals defined by each
potential boundary x1,x2,…,x8. The non-overlapping intervals I1,…,I7 are used to score gene models.
The predicted splice site at x5 is associated with I5.

Table 4. Performance for Gene Predictors Including TwinScan and Retrained GlimmerM in Addition to the Programs Listed in Table 1

CG MG CE ME WE SN

SC-5 1385 (78%) 17 (1%) 6952 (93%) 196 (3%) 22 98%
SC-3 1345 (75%) 24 (1%) 6911 (92%) 194 (3%) 34 98%
SC-5g 1320 (74%) 16 (1%) 6878 (92%) 173 (2%) 37 98%
LC2-3 1293 (73%) 12 (1%) 6810 (91%) 156 (2%) 77 99%
LC1-3 1206 (68%) 14 (1%) 6692 (89%) 207 (3%) 48 98%
TS 1200 (67%) 17 (1%) 6569 (87%) 299 (4%) 66 96%
GM2 563 (32%) 10 (1%) 5321 (71%) 673 (9%) 386 93%

SC-5 indicates SC using all five gene prediction programs; SC-3, SC using three gene prediction program; SC-5g, SC using five gene prediction
programs and no alignment data; LC2-3, LC2 using three gene prediction programs; LC1-3, LC1 using three gene prediction programs; TS,
TwinScan; and GM2, newer GlimmerM output. The three prediction programs used by SC-3, LC2-3, and LC1-3 are TwinScan, GeneMark.hmm, and
GM2.
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METHODS
Linear Combiner
Four types of signals are considered for LC1: start codons, stop
codons, splice donors, and splice acceptors. Processing the input
sequence from left to right, LC1 computes partial gene models
representing the optimal sequence of signals leading to any given
signal in the sequence. Signals are linked together in a gene
model only when such a link is biologically meaningful; for in-
stance, a donor site (the end of an exon) can only be linked back
to a previous acceptor site (the beginning of an exon) or a start
codon. In either case, the sequence between the donor site and
the previous signal is scored as a protein coding interval. An
acceptor site can only be linked to a preceding donor site, and the
intervening sequence is scored as a noncoding interval. We use a
dynamic programming algorithm that scans the signals from left
to right (5� to 3� in the DNA sequence) and, for each interval
bounded by a pair of signals, computes a separate score for each
of the three possible reading frames. (This ensures that all exons
in a gene model are in the same frame.) The score is computed as
a weighted sum of the evidence. More precisely, let S be an input
sequence, Sx be the base at position x,
Sx…y be the subsequence spanning the
interval from x to y, and Sigx and Sigy be
a signal at location x and y, respectively.
We compute scores in a dynamic pro-
gramming matrix D, as follows:

D�Sigy� = max
1 � x < y

�D�Sigx�

+ �
k

w�k�hk�Sx..y�� ( 1 )

wherew(k) is the weight assigned to each
evidence source k. We compute D for all
three reading frames at each position y.
For LC1, which is a simple voting com-
biner, all weights are set to one. (The evi-
dence for LC1 consists only of gene find-
ers, but we permit other sources in LC2
and in SC.) The function hk(Sx…y) returns
the score given by each gene finder (or
other evidence type) for the subse-

quence Sx…y. For protein coding inter-
vals, we compute hk for gene finder k by
simply counting the number of bases
predicted to be coding by that gene
finder; conversely, we count the number
of bases predicted to be noncoding for
noncoding intervals. Essentially, this
formula says that for signal Sigy, we scan
back and compute a score for each pre-
vious signal by adding together the pre-
vious signal’s score plus the weighted
evidence for the intervening sequence.
We then choose the best total score and
store it at y. We construct a gene model
by tracing the “parse” back through the
matrix. Because computation is done
only at positions containing one of the
signal types, the computational com-
plexity is O(mn2), wherem is the number
of gene finders and n is the number of
signals detected.

Both the SC and LC2 use a modified
version of the LC1 algorithm to con-
struct gene models from non-overlap-
ping sequence intervals. The most sig-
nificant difference is that these algo-
rithms include sequence alignment in-
formation as additional evidence types.
The other major difference is that rather
than computing scores only between
predefined signal positions, the algo-

rithm computes scores for subsequence Sx…y, where x and y can
be (1) the locations of signals or (2) boundaries of alignment
regions. Figure 2 illustrates how a genome is split into sequence
intervals where interval I1 = Sx1…(x2 � 1)

, I2 = Sx2…(x3 � 1)
, etc. Note

that the intervals in Figure 2 can begin or end in the middle of an
exon (or intron), because alignments are not constrained by exon
boundaries. Figure 3 shows an example in which multiple over-
lapping gene models occur in a single reading frame. Interval I4
is part of four different candidate gene models: It is alternatively
a complete exon, the interior of an exon, the 5� end of an exon,
or the 3� end of an exon. If these predictions are all in the same
reading frame, only the highest-scoring partial gene model will
be stored at x5.

The evidence for each subsequence Sx…y is captured in a
vector v = [v(1), v(2), …, v(m)], for m different types
of evidence. We compute the values v(k) by using the scores from
the gene finders or the percentage of similarity from the align-
ment algorithms. For gene finders that do not score each exon,
we use a value of one for predicted coding intervals and zero for
noncoding intervals. Because many protein (respectively, EST)
sequences can align to the same place, we choose the alignment

Table 5. The Set of Labels That Describe Each Sequence Interval and Are Used to
Construct Gene Models on the Positive Strand

Interval labels Acceptor (a) Start (r) Coding (c) Donor (d) Stop (t)

Noncoding (nc) 0 0 0 0 0
Beginning internal (bn) 1 0 1 0 0
Complete internal (cn) 1 0 1 1 0
Complete terminal (ct) 1 0 1 0 1
Partial initial (bi) 0 1 1 0 0
Complete initial (ci) 0 1 1 1 0
Complete single (cs) 0 1 1 0 1
Coding (c) 0 0 1 0 0
Partial terminal (pt) 0 0 1 0 1
Ending internal (en) 0 0 1 1 0

Labels reflect partial and complete exons. Each entry asserts whether the condition in that column
must be true (1) or false (0). Each of the underlying conditions (acceptor, start, coding, donor,
stop) define the type of coding interval and are represented by independent evidence sources.

Figure 3 An example of four overlapping candidate gene models G1 through G4. The exons are
assumed to be part of the same coding frame. In this example, if the evidence only predicts G1 and
G2, the combiner scores G3 or G4 if either model is optimal.
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with the highest percentage of similarity to represent the protein
(EST) evidence. For example, in Figure 2, interval I1 has evidence
from two gene prediction programs (GP1 and GP2), two protein
sequence alignments, and one EST alignment. The evidence vec-
tor for I1 is v = (GP1, GP2, Protein, EST) = (0.9, 1.0, 0.89, 0.32).
Splice site predictions are not included in the LC2 vectors; they
are used only to mark potential exon boundaries.

The dynamic programming algorithm for LC2 differs from
equation 1 in the way the score is computed for Sx…y. (This
change leads directly to the dynamic programming algorithm for
SC.) In Figure 2, for example, the score for subsequence Sx2…x5 is
the score for interval I2 plus the score for interval I3 plus the score
for interval I4. Each interval between Sigx and Sigy is scored ac-
cording to its evidence vector v. The scoring function b(v), is
simply the sum of the scores for each evidence source’s entry in
the evidence vector v(k), multiplied by the respective weight w(k)
and normalized by multiplying by the interval length. A separate
score is stored for each signal Sigy (for each reading frame), which
maximizes the following:

D�Sigy� = max
1 � x < y

�D�Sigx� + �
j
b�vj�� ( 2 )

where j iterates over all non-overlapping intervals between Sigx
and Sigy. LC2 uses equal weights of 0.3 for each gene prediction
program, 0.2 for alignments to gene index entries (ESTs), and
0.21 for protein alignments. EST alignments are given slightly
less weight than do proteins because sizable regions of many ESTs
correspond to untranslated regions of the mRNA transcript.

Statistical Combiner
The goal of the SC is to identify the most probable set of gene
models by using the knowledge gained from a training set. This
is accomplished by finding a series of zero or more gene models
g1,g2,…,gn with maximal posterior probability given the input
evidence E: arg maxg1, g2,…gn

P(g1,g2,…,gn | E).
Gene models are defined by four exon types: single, initial,

internal, and terminal. The four exon types are defined by nine
partial and complete exon labels per strand, which are defined by
five underlying events: start, coding, donor, acceptor, and stop.
In the LCs, only coding and noncoding sequence intervals are
scored. The statistical method also scores the evidence at the
exon boundaries. For the positive strand (moving left to right in
the 5� to 3� direction), three states can describe the left boundary
of a coding interval: an acceptor (a) site, a start (r) site, or no exon
boundary. The three possible states for the right boundary are as
follows: donor (d) site, stop (t) site, or no exon boundary. Com-

bining the boundary conditions in all
biologically meaningful ways generates
nine different complete and partial exon
types on the positive strand and a repre-
sentation for noncoding intervals. Each
label is a conjunction of events across an
interval and its boundaries. Table 5 lists
the events and their corresponding la-
bels. For example, the definition of a be-
ginning internal exon (bn) is an interval
such that the left boundary is an accep-
tor site, a protein coding interval spans
the region, there is no start site on the
left boundary, no donor site on the right
boundary, and no stop site at the right
boundary. Stated more intuitively, this
interval is a portion of an internal exon
that contains the left (5�) boundary but
not the right (3�) boundary.

Evaluating Candidate Gene Models
Each gene model is a series of sequence
labels l1,l2,…,lz from Table 5. The prob-
ability of a gene model given evidence
E = e1,e2,…,ez, is defined as:

P(l1,l2,…lz | e1,e2,…ez)

where ej is the evidence for interval Ij. Each ej contains five evi-
dence vectors: va,vr,vc,vd,vt, one for each of the five events: ac-
ceptor, donor, coding, start, and stop. The vectors representing
exon boundary conditions (the splice sites, start and stop
codons) are defined by the evidence aligned with the sequence
interval’s boundary. For example, assuming each evidence type is
a valid splice site predictor in Figure 2, the evidence vector rep-
resenting a possible donor site at the right boundary position of
I1 (labeled x2 in the figure), is defined as vd = (SP,GP1,
GP2,Protein,EST) = (1,0.9,0,0,0.32).

To compute the probability of a given label lj at interval Ij,
we use an approximation because the size of the evidence E is
proportional to the sequence length, which can vary. We com-
pute the probability of a gene model by taking the product of
probabilities for each label lj, making the simplifying assumption
that lj is only dependent on interval Ij and the adjacent intervals
Ij � 1 and Ij + 1:

P�l1,l2, . . . , lz | e1, e2, . . . , ez� ≅ �
j= 1

z

P�lj | ej− 1, ej, ej + 1�

Each ej � 1,ej,ej + 1 contains the five vectors: va,vr,vc,vd,vt cap-
turing the evidence from intervals Ij � 1, Ij, and Ij + 1. For interval
I1 in Figure 2, each evidence vector encodes the evidence from
interval I0, I1, and I2 (for this example, I1 represents the left
boundary and I0 represents a zero-valued vector). The donor site
adjacent to interval I1 from Figure 2 is vd = (0,0,0,0,0,1,0.9,
0,0,0.32,0,0,0,0.89,0).

By using the five evidence vectors and the independence
assumption, the probability of each label from Table 5 is com-
puted from the product of five independent probability values,
each conditioned on one of the evidence vectors: va,vr,vc,vd,vt.
For example, the beginning internal exon (bn) label is
P(lj = bn | ej � 1,ej,ej + 1) = P(a | va) � P(–�r | vr) � P(c | vc) �

P(–�d | vd) � P(–�t | vt). Probabilities for each label are computed ac-
cording to the definitions in Table 5. For each event q � {a,d,c,r,t};
P(–�q | vq = 1 � P(q | vq), and the probability of the noncoding label
(nc) is P( l j = nc | e j � 1,e j ,e j + 1) = P(–�a | va) � P(–�r | v r) �

P(–�c | vc) � P(–�d | vd) � P(–�t | vt).
The most probable set of gene models are found by using the

dynamic programming algorithm from LC2 (equation 2), replac-
ing the linear scoring function with the probability estimate that
label lj corresponds to interval Ij between signals Sigx and Sigy.

Figure 4 An example decision tree for combining gene prediction evidence to predict protein
coding intervals. Each leaf x contains a probability value P(c | vc,x), computed from the matching ex-
amples in the training set.
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Because we use negative log probabilities, we take the minimum
rather than the maximum; each Sigy is linked to the previous Sigx
that minimizes the score:

D�Sigy� = min
1 � x < y

�D�Sigx� − �
j
log P�lj|ej− 1, ej, ej+ 1��

Estimating Probabilities by Using Decision Trees
Decision trees are used to compute probabilities for each of the
five events: P(a | va), P(r | vr), P(c | vc), P(d | vd), and P(t | vt). For each
event model, the list of evidence vectors is generated from the
training set. Each evidence vector generated from the training set
records the percentage of correct predictions it makes. For ex-
ample, if a donor evidence vector vd predicts three of the true
donor sites but makes two additional predictions, the percentage
of correct predictions is 3/5. For the coding evidence vectors (vc),
nucleotides are counted instead of the number of occurrences.

Decision trees are constructed by using OC1 (Murthy et al.
1994) to apply the training examples to new data. Using the
protein coding model P(c | vc) as an example, the entire set of
training vectors representing coding intervals are mapped to one
of two classes: coding, if more than half of an evidence vector’s
nucleotides correctly predict protein coding intervals; noncod-
ing, otherwise. Each leaf node represents evidence vectors classi-
fied as either coding or noncoding vectors. Traversing the deci-
sion tree matches the input to a local region of the vector space.
The average percentage of correct predictions from the vectors at
the leaf node are the final probability estimate. Separate prob-
abilities are estimated in this way for each of the five event mod-
els. An example decision tree is shown in Figure 4. Each leaf
stores the individual examples from the training set, which sat-
isfy all of the yes and no conditions, starting from the root of the
tree. OC1 decision trees consider both single and multiple con-
ditions at each node. For example, Leaf1 considers two condi-
tions: whether the Genscan prediction is >0.3 and a protein
aligns with >50% identity, whereas Leaf2 considers only one con-
dition: whether a prediction is made by GlimmerM.

The criteria for splitting each node in an OC1 tree is non-
deterministic in order to consider the wide range of possible so-
lutions. As a result, a different OC1 tree is generated each time the
training program is run. Because any one tree may not produce the
best results, SC uses 10 decision trees for each of the five event
models (acceptor, donor, coding, start, and stop). A single probabil-
ity value is the average value from the 10 trees. Each decision tree is
generated by using the default parameters for the OC1 software.

Program Availability
The original Linear Combiner (LC1) is implemented in Perl, and
LC2 and SC are implemented in C++. The software is an open
source package and freely available at http://www.tigr.org/
software/combiner.
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